Metabolic Brain Disease

, Volume 11, Issue 2, pp 153–164 | Cite as

Taurine as osmoregulator and neuromodulator in the brain

  • Simo S. Oja
  • Pirjo Saransaari


Taurine has been assumed to function as an osmoregulator and neuromodulator in the brain. The pertinent studies are now reviewed in an attempt to formulate a unifying hypothesis as to how taurine could simultaneously act in both roles. Neuromodulatory actions of taurine may also underlie its protective effects against neuronal overexcitation and glutamate agonist-induced neurotoxicity.


Taurine brain cell volume regulation neuromodulation neuroprotection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airaksinen, E.M., Oja, S.S., Marnela K.-M., Leino E., and Pääkkönen L (1980). Effects of taurine treatment on epileptic patients.Prog. Clin. Biol. Res. 39:157–166.PubMedGoogle Scholar
  2. Airaksinen, E.M., Koivisto, K., Keränen, T., Pitkänen, A., Riekkinen, P.J., Oja, S.S. et al. (1987). Biochemical and clinical studies on epileptic patients during two phase I trials with the novel anticonvulsant taltrimide.Epilepsy Res. 1:308–311.PubMedGoogle Scholar
  3. Beetsch, J.W., and Olson, J.E. (1993). Taurine transport in rat astrocytes adapted to hyperosmotic conditions.Brain Res. 613:10–15.PubMedGoogle Scholar
  4. Chesney R.W., Gusowski N. and Dabbagh S. (1985). Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids.J. Clin. Invest. 76:2213–2221.PubMedGoogle Scholar
  5. Curtis, D.R., and Watkins, J.C. (1960). The excitation and depression of spinal neurones by structurally related amino acids.J. Neurochem. 6:117–141.PubMedGoogle Scholar
  6. Heilig, C.V., Stromski, M.E., Blumenfeld, J.B., Lee, J.B., and Gullans, S.R. (1989). Characterization of the major brain osmolytes that accumulate in salt-loaded rats.Am. J. Physiol. 257:F1108-F1116.PubMedGoogle Scholar
  7. Huxtable, R.J. (1986).Biochemistry of Sulfur. Plenum Press, New York.Google Scholar
  8. Huxtable, R.J. (1989). Taurine in the central nervous system and the mammalian actions of taurine.Prog. Neurobiol. 32:471–533.PubMedGoogle Scholar
  9. Huxtable, R.J. (1991). The physiological actions of taurine.Physiol. Rev. 72:101–163.Google Scholar
  10. Jackson, P.S., and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux.Am. J. Physiol. 34:C1489-C1500.Google Scholar
  11. Kimelberg, H.K., and O'Connor, E. (1988). Swelling of astrocytes causes membrane potential depolarization.Glia 1:219–224.PubMedGoogle Scholar
  12. Kimelberg, H.K., Goderie, S.K., Higman, S., Pang, S., and Waniewski, R.A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures.J. Neurosci. 10:1583–1591.PubMedGoogle Scholar
  13. Kontro, P. (1979). Components of taurine efflux in rat brain synaptosomes.Neuroscience 4:1745–1749.PubMedGoogle Scholar
  14. Kontro, P., and Oja S.S. (1978). Sodium dependence of taurine uptake in rat brain synaptosomes.Neuroscience 3:761–765.PubMedGoogle Scholar
  15. Kontro, P., and Oja, S.S. (1983a). Sodium-independent binding of taurine to brain synaptic membranes.Cell. Mol. Neurobiol. 3:183–187.PubMedGoogle Scholar
  16. Kontro, P., and Oja, S.S. (1983b). Free amino acids in epilepsy: possible role of taurine.Acta Neurol. Scand. 67, Suppl. 93:5–20.Google Scholar
  17. Kontro, P., and Oja, S.S. (1987a). Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain.Dev. Brain Res. 37:277–291.Google Scholar
  18. Kontro, P., and Oja, S.S. (1987b). Co-operativity in sodium-independent taurine binding to brain membranes in the mouse.Neuroscience 23:567–570.PubMedGoogle Scholar
  19. Kontro, P. and Oja, S.S. (1987c). Glycinergic systems in brain stem of developing and adult mice: effects of taurine.Int. J. Dev. Neurosci. 5:461–470.PubMedGoogle Scholar
  20. Kontro, P., and Oja, S.S. (1987d). Effects of the new anticonvulsant taurine derivative, taltrimide, on membrane transport and binding of GABA and taurine in the mouse cerebrum.Neuropharmacology 26:19–23.PubMedGoogle Scholar
  21. Kontro, P., and Oja, S.S. (1988). Effects of taurine on the influx and efflux of calcium in brain slices of adult and developing mice.Int. J. Neurosci. 38:103–109.PubMedGoogle Scholar
  22. Kontro, P., and Oja, S.S. (1989). Release of taurine and GABA from cerebellar slices from developing and adult mice.Neuroscience 29:413–423.PubMedGoogle Scholar
  23. Kontro, P., and Oja, S.S. (1990). Interactions of taurine with GABAB receptors in mouse brain.Neuropharmacology 29:243–247.PubMedGoogle Scholar
  24. Korpi, E.R., Kontro, P., Nieminen, K., Marnela, K.-M., and Oja, S.S. (1981). Spontaneous and depolarization-induced efflux of hypotaurine from mouse cerebral cortex slices: comparison with taurine and GABA.Life Sci. 29:811–816.PubMedGoogle Scholar
  25. Lähdesmäki, P., and Oja, S.S. (1973). On the mechanism of taurine transport at brain cell membranes.J. Neurochem. 20:1411–1417.PubMedGoogle Scholar
  26. Law, R.O. (1989). The effects of pregnancy on the content of water, taurine and total amino nitrogen in rat cerebral cortex.J. Neurochem. 53:300–302.PubMedGoogle Scholar
  27. Law, R.O. (1991). Amino acids as volume-regulatory osmolytes in mammalian cells.Comp. Biochem. Physiol. 99A:263–277.Google Scholar
  28. Lehmann, A. (1989). Effects of microdialysis-perfusion with anisoosmotic media on extracellular amino acids in the rat hippocampus and skeletal muscle.J. Neurochem. 53:525–535.PubMedGoogle Scholar
  29. Lindén, I.-B., Gothóni, G., Kontro, P., and Oja, S.S. (1983). Anticonvulsant activity of phthalimidoethanesulphonamides, derivatives of taurine.Neurochem. Int. 5:319–324.Google Scholar
  30. Linne, M.-L., Jalonen, T.O., Saransaari, P., and Oja, S.S. (1996). Taurine-induced single-channel currents in cultured cerebellar granule cells. In (R.J. Huxtable, J. Azuma, M. Namagawa, K. Kuriyama and A. Baba, eds.)Taurine: Basic and Clinical Aspects, Plenum Press, New York, in press.Google Scholar
  31. Malminen, O., and Kontro, P. (1987). Actions of taurine on the GABA-benzodiazepine receptor complex solubilized from rat brain.Neurochem. Int. 11:113–117.Google Scholar
  32. Martin, D.L., Madelian, V., Seligmann B., and Shain W. (1990). The role of osmotic pressure and membrane potential in K-stimulated taurine release from cultured astrocytes and LRM55 cells.J. Neurosci. 10:571–577.PubMedGoogle Scholar
  33. Morán, J., Maar, T.E., and Pasantes-Morales, H. (1994). Impaired cell volume regulation in taurine deficient cultured astrocytes.Neurochem. Res. 19:415–420.PubMedGoogle Scholar
  34. Oja, S.S., and Kontro, P. (1983). Taurine. In (A. Lajtha, ed.)Handbook of Neurochemistry, 2nd edn, vol. 3, Plenum Press, New York, p. 501–533.Google Scholar
  35. Oja, S.S., and Kontro, P. (1989). Release of endogenous taurine and γ-aminobutyric acid from mouse brain slices from the adult and developing mouse.J. Neurochem. 52:1018–1024.PubMedGoogle Scholar
  36. Oja, S.S., and Saransaari, P. (1992a). Taurine release and swelling of cerebral cortex slices from adult and developing mice in media of different ionic compositions.J. Neurosci. Res. 32:551–561.PubMedGoogle Scholar
  37. Oja, S.S., and Saransaari, P. (1992b). Cell volume changes and taurine release in cerebral cortical slices.Adv. Exp. Med. Biol. 315:215–220.PubMedGoogle Scholar
  38. Oja, S.S., and Saransaari, P. (1996). Kinetic analysis of taurine influx into cerebral cortical slices from adult and developing mice in different incubation conditions.Neurochem. Res. 21:161–166.PubMedGoogle Scholar
  39. Oja, S.S., Uusitalo, A.J., Vahvelainen, M.-L., and Piha, R.S. (1968). Changes in cerebral and hepatic amino acids in the rat and guinea pig during development.Brain Res. 11:655–661.PubMedGoogle Scholar
  40. Oja, S.S., Lehtinen, I., and Lähdesmäki, P. (1976). Taurine transport rates between plasma and tissues in adult and 7-day-old mice.Q. J. Exp. Physiol. 61:133–143.Google Scholar
  41. Oja, S.S., Lähdesmäki, P., and Kontro, P. (1977). Amino acids as inhibitory neurotransmitters.Prog. Pharmacol. 1/3:1–119.Google Scholar
  42. Oja, S.S., Kontro, P., Lindén, I.-B., and Gothóni, G. (1983). Anticonvulsant activity of some 2-aminoethanesulphonic acid (taurine) derivatives.Eur. J. Pharmacol. 87:191–198.PubMedGoogle Scholar
  43. Oja, S.S., Korpi, E.R., and Saransaari, P. (1990). Modification of chloride flux across brain membranes by inhibitory amino acids in developing and adult mice.Neurochem. Res. 15:797–804.PubMedGoogle Scholar
  44. Okamoto, K., and Sakai, Y. (1981). Inhibitory actions of taurocyamine, hypotaurine, homotaurine, taurine and GABA on spike discharges of Purkinje cells, and localization of sensitive sites, in guinea pig cerebellar slices.Brain Res. 206:371–386.PubMedGoogle Scholar
  45. Pasantes-Morales, H., and Schousboe, A. (1988). Release of taurine from astrocytes during potassium-evoked swelling.Glia 2:45–50.Google Scholar
  46. Pasantes-Morales, H., Moran, J., and Schousboe, A. (1990). Volume-sensitive release of taurine from cultured astrocytes: properties and mechanism.Glia 3:427–432.PubMedGoogle Scholar
  47. Sánchez Olea, R., and Pasantes-Morales, H. (1990). Chloride dependence of the K+-stimulated release of taurine from synaptosomes.Neurochem. Res. 15:535–540.PubMedGoogle Scholar
  48. Sánchez-Olea, R., Morán, J., Schousboe, A., and Pasantes-Morales, H. (1991). Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion.Neurosci. Lett. 130:233–236.PubMedGoogle Scholar
  49. Sánchez-Olea, R., Morán, J., and Pasantes-Morales, H. (1992). Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes.J. Neurosci. Res. 32:86–92.PubMedGoogle Scholar
  50. Saransaari, P., and Oja, S.S. (1991). Excitatory amino acids evoke taurine release from cerebral cortex slices from adult and developing mice.Neuroscience 45:451–459.PubMedGoogle Scholar
  51. Saransaari P., and Oja, S.S. (1996). Taurine and neural cell damage. In (R.J. Huxtable, J. Azuma, M. Namagawa, K. Kuriyama and A. Baba, eds.)Taurine: Basic and Clinical Aspects, Plenum Press, New York, in press.Google Scholar
  52. Schousboe, A., and Pasantes-Morales, H. (1989). Potassium-stimulated release of [3H]taurine from cultured GABAergic and glutamatergic neurons.J. Neurochem. 53:1309–1315.PubMedGoogle Scholar
  53. Schousboe, A., Morán, J., and Pasantes-Morales, H. (1990). Potassium-stimulated release of taurine from cultured cerebellar granule neurons is associated with cell swelling.J. Neurosci. Res. 27:71–77.PubMedGoogle Scholar
  54. Schousboe, A., Sánchez Olea, R., Morán, J., and Pasantes-Morales, H. (1991). Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport.J. Neurosci. Res. 30:661–665.PubMedGoogle Scholar
  55. Schurr, A., Tseng, M.T., West, C.A., and Rigor, B.M. (1987). Taurine improves the recovery of neuronal function following cerebral hypoxia: anin vitro study.Life Sci. 40:2059–2066.PubMedGoogle Scholar
  56. Simpson, J.W., Allen, K, and Awapara, J. (1959). Free amino acids in some aquatic invertebrates.Biol. Bull. 117:371–381.Google Scholar
  57. Solís, J.M., Herranz, A.S., Herreras, O. Lerma, J., and Martin del Río, R. (1988). Does taurine act as an osmoregulatory substance in the rat brain.Neurosci. Lett. 91:53–58.PubMedGoogle Scholar
  58. Sturman, J.A. (1993). Taurine in development.Physiol. Rev. 73:119–147.PubMedGoogle Scholar
  59. Sturman, J.A., Moretz, R.C., French, J.H., and Wisniewski, H.M. (1985). Taurine deficiency in the developing cat: persistence of the cerebellar external granule cell layer.J. Neurosci. Res. 13:405–416.PubMedGoogle Scholar
  60. Trachtman, H., Barbour, R., Sturman, J.A., and Finberg, L. (1988). Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration.Pediat. Res. 23:35–39.PubMedGoogle Scholar
  61. Trachtman, H., Del Pizzo R., and Sturman, J.A. (1990). Taurine and osmoregulation. III. Taurine deficiency protects against cerebral edema during aucte hyponatremia.Pediat. Res. 27:85–88.PubMedGoogle Scholar
  62. Trachtman, H., Futterweit, S., and Del Pizzo, R. (1992). Taurine and osmoregulation. IV. Cerebral taurine transport is increased in rats with hypernatremic dehydration.Pediat. Res. 32:118–124.PubMedGoogle Scholar
  63. Trenkner, E. (1990). The role of taurine and glutamate during early postnatal cerebellar development of normal and Weaver mutant mice.Adv. Exp. Med. Biol. 268:239–244.PubMedGoogle Scholar
  64. Trenkner, E., and Sturman, J.A. (1991). The role of taurine in the survival and function of cerebellar cells in cultures of early postnatal cat.Int. J. Dev. Neurosci. 9:77–88.PubMedGoogle Scholar
  65. Varga, V., Janáky, R., and Oja, S.S. (1992). Modulation of glutamate agonist-induced influx of calcium into neurons by γ-L-glutamyl and β-L-aspartyl dipeptides.Neurosci. Lett. 138:270–274.PubMedGoogle Scholar
  66. Wade, J.V., Olson, J.P., Samson, F.E., and Nelson, S.R. (1988). A possible role for taurine in osmoregulation within the brain.J. Neurochem. 51:740–745.PubMedGoogle Scholar
  67. Walz, W, and Allen, A.F. (1987). Evaluation of the osmoregulatory function of taurine in brain cells.Exp. Brain Res. 68:290–298.PubMedGoogle Scholar
  68. Yarbrough, G.G., Singh, D.K., and Taylor D.A. (1981). Neuropharmacological characterization of a taurine antagonist.J. Pharmacol. Exp. Ther. 219:604–613.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Simo S. Oja
    • 1
    • 2
  • Pirjo Saransaari
    • 1
  1. 1.Tampere Brain Research CenterUniversity of Tampere Medical SchoolTampereFinland
  2. 2.Department of Clinical PhysiologyTampere University HospitalTampereFinland

Personalised recommendations