Skip to main content
Log in

Interactions of excitatory amino acid antagonists with conventional antiepileptic drugs

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Excitatory amino acid antagonists possess anticonvulsant properties in many experimental models of epilepsy and were shown to potentiate the protective activity of conventional antiepileptics against maximal electroshock-induced seizures in mice. Combined treatments of valproate with either D,L-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid or dizocilpine (NMDA antagonists), which provided a 50% protection against maximal electroshock, produced no side-effects, as measured in the chimney test (motor coordination) or passive avoidance task (long-term memory). Valproate alone at its ED50 against maximal electroshock, induced severe adverse effects. The NMDA antagonists, D-3-(2-carboxypiperazine-4-yl)-1-propenyl-1-phosphonic acid, memantine, procyclidine, and trihexyphenidyl also potentiated the protective activity of conventional antiepileptics but these treatments were associated with considerable side-effects. The non-NMDA receptor antagonists, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline and 1-(amino-phenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine, also enhanced the anticonvulsive action of antiepileptic drugs against maximal electroshock, and these combinations generally resulted in no adverse effects. The potential clinical importance of some combinations of common antiepileptics with excitatory amino acid antagonists is postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Ari, Y., Lagowska, J., Tremblay, E., and Le Gal LaSalle, G. (1979). A new model of focal status epilepticus: Intraamygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures.Brain Res. 163:176–179.

    PubMed  Google Scholar 

  • Boissier, J.-R., Tardy, J., and Diverres, J.-C. (1960). Une nouvelle methode simple pour explorer l'action ‘tranquilisante’: le test de la cheminee.Med. Exp. 3:81–84.

    Google Scholar 

  • Bormann, J. (1989). Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels.Eur. J. Pharmacol. 166:591–592.

    PubMed  Google Scholar 

  • Borowicz, K.K., Gasior, M., Kleinrok, Z., and Czuczwar, S.J. (1995). The non-competitive AMPA/kainate receptor antagonist, GYKI 52466, potentiates the anticonvulsant activity of conventional antiepileptics.Eur. J. Pharmacol. 281:319–326.

    PubMed  Google Scholar 

  • Chapman, A.G., Graham, J., and Meldrum, B.S. (1990). Potent oral anticonvulsant action of CPP and CPPene in DBA/2 mice.Eur. J. Pharmacol. 178:97–99.

    PubMed  Google Scholar 

  • Collingridge, G.L., and Singer, W. (1990). Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol. Sci. 11:290–296.

    PubMed  Google Scholar 

  • Croucher, M.J., Collins, J.F., and Meldrum, B.S. (1982). Anticonvulsant action of excitatory amino acid antagonists.Science 216:899–901.

    PubMed  Google Scholar 

  • Curtis, D.R., and Watkins, J.C. (1963). Acidic amino acids with strong excitatory actions on mammalian neurons.J. Physiol. 166:1–14.

    PubMed  Google Scholar 

  • Curtis, D.R., and Johnston, G.A.R. (1974). Amino acid transmitters in the mammalian central nervous system.Ergebn. Physiol. 69:97–188.

    PubMed  Google Scholar 

  • Curtis, D.R., Phillis, J.W., and Watkins, J.C. (1959). Chemical excitation of spinal neurons.Nature 183:611–612.

    PubMed  Google Scholar 

  • Czechowska, G., Dziki, M., Pietrasiewicz, T., Kleinrok, Z., Turski, W.A., and Czuczwar, S.J. (1993). Competitive antagonists of NMDA receptors, CGP 37849 and CGP 39551, enhance the anticonvulsant activity of valproate against electroconvulsions in mice.Eur. J. Pharmacol. 232:59–64.

    PubMed  Google Scholar 

  • Czuczwar, S.J., and Meldrum, B.S. (1982). Protection against chemically induced seizures by 2-amino-7-phosphono-heptanoic acid.Eur. J. Pharmacol. 83:335–338.

    PubMed  Google Scholar 

  • Czuczwar, S.J., Turski, L., Schwarz, M., Turski, W.A., and Kleinrok, Z. (1984). Effects of excitatory amino-acid antagonists on the anticonvulsant action of phenobarbital or diphenylhydantoin in mice.Eur. J. Pharmacol. 100:357–362.

    PubMed  Google Scholar 

  • Czuczwar, S.J., Cavalheiro, E.A., Turski, L., Turski, W.A., and Kleinrok, Z. (1985a). Phosphonic analogues of excitatory amino acids raise the threshold for maximal electroconvulsions in mice.Neurosci. Res. 3:86–90.

    PubMed  Google Scholar 

  • Czuczwar, S.J., Frey, H.-H., and Löscher, W. (1985b). Antagonism of N-methyl-D,L-aspartic acid-induced seizures by antiepileptic drugs and other agents.Eur. J. Pharmacol. 108:273–280.

    PubMed  Google Scholar 

  • Czuczwar, S.J., Gasior, M., Turski, W.A., and Kleinrok, Z. (1994). Influence of a Ca2+ channel agonist, BAY k-8644, on the anticonvulsant activity of NMDA and non-NMDA receptor antagonists.Eur. J. Pharmacol. 264:103–106.

    PubMed  Google Scholar 

  • Czuczwar, S.J., Borowicz, K.K., Kleinrok, Z., Tutka, P., Zarnowski, T., and Turski, W.A. (1995). Influence of combined treatment with NMDA and non-NMDA receptor antagonists on electroconvulsions in mice.Eur. J. Pharmacol. 281:327–333.

    PubMed  Google Scholar 

  • Danysz, W., Essman, U., Bresink, I., and Wilke, R. (1994). Glutamate antagonists have different effects on spontaneous locomotor activity in rats.Pharmacol. Biochem. Behav. 48:111–118.

    PubMed  Google Scholar 

  • Davis, S., Butcher, S.P., and Morris, R.G.M. (1988). The role of NMDA receptors in certain kinds of learning. In (T.P. Hicks, D. Lodge, and H. Mclennan, eds.),Excitatory Amino Acid Transmission. Neurology and Neurobiology (vol. 24), Alan R. Liss, New York, pp. 43–46.

    Google Scholar 

  • Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain.J. Neurochem. 42:1–11.

    PubMed  Google Scholar 

  • Greenamyre, J.T. (1986). The role of glutamate in neurotransmission and in neurologic disease.Arch. Neurol. 43:1058–1062.

    PubMed  Google Scholar 

  • Hayashi, T. (1954). Effects of sodium glutamate on the nervous system.Keio J. Med. 3:183–192.

    Google Scholar 

  • Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors.Annu. Rev. Neurosci. 17:31–108.

    PubMed  Google Scholar 

  • Honoré, T., Davies, S., Drejer, J., Fletcher, E.J., Jacobsen, P., Lodge, D., and Nielsen, F.E. (1988). Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists.Science 241:701–703.

    PubMed  Google Scholar 

  • Huxtable, R.J., Laird, H., Lippincott, S.E., and Wolson, P. (1983). Epilepsy and the concentration of plasma amino acids in humans.Neurochem. Int. 5:125–135.

    Google Scholar 

  • Kleinrok, Z., Czuczwar S.J., and Turski, L. (1980). Prevention of kainic acid-induced seizure-like activity by antiepileptic drugs.Pol. J. Pharmacol. Pharm. 32:261–264.

    PubMed  Google Scholar 

  • Kupferberg, H.J. (1989). Antiepileptic drug development program: a cooperative effort of government and industry.Epilepsia 30 (Suppl. 1):S51-S56.

    PubMed  Google Scholar 

  • Löscher, W., Jäckel, R., and Czuczwar, S.J. (1986). Is amygdala kindling in rats a model for drug-resistant partial epilepsy?Exp. Neurol. 93:211–226.

    PubMed  Google Scholar 

  • Löscher, W., Nolting, B., and Hönack, D. (1988). Evaluation of CPP, a selective NMDA antagonist in various models of epilepsy. Comparison with other NMDA antagonists, and with diazepam and phenobarbital.Eur. J. Pharmacol. 152: 9–17.

    PubMed  Google Scholar 

  • Löscher, W., and Hönack, D. (1991). Anticonvulsant and behavioral effects of two novel competitive N-methyl-D-aspartic acid receptor antagonists, CGP 37849 and CGP 39551, in the kindling model of epilepsy. Comparison with MK-801 and carbamazepine.J. Pharmacol. Exp. Ther. 256:432–440.

    PubMed  Google Scholar 

  • Löscher, W., Rundfeldt, C., and Hönack, D. (1993). Low doses of NMDA receptor antagonists synergistically increase the anticonvulsant effect of the AMPA receptor antagonist NBQX in the kindling model of epilepsy.Eur. J. Neurosci. 5:1545–1550.

    PubMed  Google Scholar 

  • McLean, M.J., and Wamil, A. (1991). Effects of anticonvulsant compounds on voltage- and neurotransmitter-activated sodium conductances of central neurons in cell culture. In (M.R. Klee, H.D. Lux, and E.-J. Speckmann, eds.),Physiology, Pharmacology and Development of Epileptogenic Phenomena- Experimental Brain Research Series 20, Springer-Verlag, Heidelberg, pp. 211–215.

    Google Scholar 

  • Nakanishi, S. (1994). Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity.Neuron 13:1031–1037.

    PubMed  Google Scholar 

  • Olney, J.W., and Sharpe, L.G. (1969). Brain lesions in an infant rhesus monkey treated with monosodium glutamate.Science 166:386–388.

    PubMed  Google Scholar 

  • Olney, J.W., Price, M.T., Labruyere, J., Salles, K.S., Friedrich, G., Mueller, M., and Silverman, E. (1987). Antiparkinsonian agents are phencyclidine agonists and N-methyl-aspartate antagonists.Eur. J. Pharmacol. 142:319–320.

    PubMed  Google Scholar 

  • Patel, S., Chapman, A.G., Graham, J.L., Meldrum, B.S., and Frey, P. (1990). Anticonvulsant activity of the NMDA antagonists, D(−)4-(3-phosphonopropyl)piperazine-2-carboxylic acid (D-CPP) and D(−)(E)-4-(3-phosphonoprop-2-enyl)piperazine- 2-carboxylic acid (D-CPP-ene) in a rodent and primate model of reflex epilepsy.Epilepsy Res. 7:3–10.

    PubMed  Google Scholar 

  • Pietrasiewicz, T., Czechowska, G., Dziki, M., Turski, W.A., Kleinrok Z., and Czuczwar, S.J. (1993). Competitive NMDA receptor antagonists enhance the antielectroshock activity of various antiepileptics.Eur. J. Pharmacol. 250:1–7.

    PubMed  Google Scholar 

  • Schmutz, M., Portet, C., Jeker, A., Klebs, K., Vassout, A., Allgeier, H., Heckendorn, R., Gagg, G.E., Olpe, H.R., and Van Riezen, H. (1990). The competitive NMDA receptor antagonists CGP 37849 and CGP 39551 are potent orally- active anticonvulsants in rodents.Naunyn-Schmiedeberg's Arch. Pharmacol. 342:61–66.

    Google Scholar 

  • Sheardown, M.J., Nielsen, E.O., Hansen, A.J., Jacobsen, P., and Honoré, T. (1990). 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia.Science 247:571–574.

    PubMed  Google Scholar 

  • Steppuhn, K.G., and Turski, L. (1993). Modulation of the seizure threshold for excitatory amino acids in mice by antiepileptic drugs and chemoconvulsants.J. Pharmacol. Exp. Ther. 265:1063–1070.

    PubMed  Google Scholar 

  • Stone, W.E., and Javid, M.J. (1983). Effects of anticonvulsants and other agents on seizures induced by intracerebral L-glutamate.Brain Res. 264:165–167.

    PubMed  Google Scholar 

  • Sveinbjornsdottir, S., Sander, J.W.A.S., Upton, D., Thompson, P.J., Patsalos, P.N., Hirt, D.et al. (1993). The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy.Epilepsy Res. 16:165–174.

    PubMed  Google Scholar 

  • Tarnawa, I., Engberg, I., and Flatman, J.A. (1990). GYKI 52466, an inhibitor of spinal reflexes is a potent quisqualate antagonist. In G. Lubec, and G.A. Rosenthal, eds),Amino Acids: Chemistry, Biology and Medicine, Escom, Leiden, pp. 538–546.

    Google Scholar 

  • Turski, W.A., Urbanska, E., Dziki, M., Parada-Turska, J., and Ikonomidou, C. (1990a). Excitatory amino acid antagonists protect mice against seizures induced by bicuculline.Brain Res. 514:131–134.

    PubMed  Google Scholar 

  • Turski, L., Niemann, W., and Stephens, D.N. (1990b). Differential effects of antiepileptic drugs and carbolines on seizures induced by excitatory amino acids.Neuroscience 39:799–807.

    PubMed  Google Scholar 

  • Turski, L., Jacobsen, P., Honoré, T., and Stephens, D.N. (1992). Relief of experimental spasticity and anxiolytic/anticonvulsant actions of the α-amino-3-hydroxy- 5-methyl-4-isoxazole-propionate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)-quinoxaline.J. Pharmacol. Exp. Ther. 260:742–747.

    PubMed  Google Scholar 

  • Urbanska, E., Dziki, M., Kleinrok, Z., Czuczwar, S.J., and Turski, W.A. (1991). Influence of MK-801 on the anticonvulsant activity of antiepileptics.Eur. J. Pharmacol. 200:277–282.

    PubMed  Google Scholar 

  • Urbanska, E., Dziki, M., Czuczwar, S.J., Kleinrok Z., and Turski, W.A. (1992). Antiparkinsonian drugs memantine and trihexyphenidyl potentiate the anticonvulsant activity of valproate against maximal electroshock-induced seizures.Neuropharmacology 31:1021–1026.

    PubMed  Google Scholar 

  • Venault, P., Chapouthier, G., de Carvalho, L.P., Simiand, J., Morre, M., Dodd, R.H., and Rossier, J. (1986). Benzodiazepines impair and beta-carbolines enhance performance in learning and memory tasks.Nature 321:864–866.

    PubMed  Google Scholar 

  • Wamil, A.W., and McLean, M.J. (1993). Phenytoin blocks N-methyl-D-aspartate responses of mouse central neurons.J. Pharmacol. Exp. Ther. 267:218–227.

    PubMed  Google Scholar 

  • Watkins, J.C., Krogsgaard-Larsen, P., and Honoré, T. (1990). Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists.Trends Pharmacol. Sci. 11:25–33.

    PubMed  Google Scholar 

  • Zeise, M.L., Kasparow, S., and Zieglgansberger, W. (1991). Valproate suppresses N-methyl-D-aspartate-evoked, transient depolarizations in the rat neocortexin vitro.Brain Res. 544:345–348.

    PubMed  Google Scholar 

  • Zorumski, C.F., and Thio, L.L. (1992). Properties of vertebrate glutamate receptors: calcium mobilization and desensitization.Prog. Neurobiol. 39:295–336.

    PubMed  Google Scholar 

  • Zarnowski, T., Kleinrok, Z., Turski, W.A., and Czuczwar, S.J. (1993). 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline enhances the protective activity of common antiepileptic drugs against maximal electroshock-induced seizures in mice.Neuropharmacology 32:895–900.

    PubMed  Google Scholar 

  • Zarnowski, T., Kleinrok, Z., Turski W.A., and Czuczwar, S.J. (1994a). The NMDA antagonist procyclidine, but not ifenprodil, enhances the protective efficacy of common antiepileptics against maximal electroshock-induced seizures in mice.J. Neural. Transm. 97:1–12.

    Google Scholar 

  • Zarnowski, T., Kleinrok, Z., Turski, W.A., and Czuczwar, S.J. (1994b). The competitive NMDA antagonist, D-CPP-ene, potentiates the anticonvulsant activity of conventional antiepileptics against maximal electroshock-induced seizures in mice.Neuropharmacology 33:619–624.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czuczwar, S.J., Turski, W.A. & Kleinrok, Z. Interactions of excitatory amino acid antagonists with conventional antiepileptic drugs. Metab Brain Dis 11, 143–152 (1996). https://doi.org/10.1007/BF02069501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069501

Keywords

Navigation