Miscellaneous data on materials for millimetre and submillimetre optics

  • James W. Lamb


Several parameters of various materials, including solid and foam dielectrics, absorbers, and metals, are collected for use in optical design in the millimetre and submillimetre range. Although the list is not exhaustive it covers most of the important materials and parameters, and extensive references are given.

Key words

Dielectrics millimetrewaves submilleterwaves material properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. J. Simonis, “Index to the literature dealing with the near-millimeter wave properties of materials,”Int. J. Infrared Millimeter Waves, vol. 3, no. 4, pp. 439–469, 1982.Google Scholar
  2. [2]
    J. R. Birch, “A bibliography on dispersive Fourier Transform spectrometry, 1963–1968”,NPL Report DES 93, Mar. 1989.Google Scholar
  3. [3]
    J. R. Birch and R. N. Clarke, “Dielectric and optical measurements from 30 to 1000 GHz,”The Radio and Electronic Engineer, vol. 52, no. 11/12, pp. 565–584, Nov./Dec. 1982.Google Scholar
  4. [4]
    M. N. Afsar and K. J. Button, “Millimeter-wave dielectric measurement of materials,”Proc. IEEE, vol. 73, no. 1, pp. 131–153, Jan. 1985.Google Scholar
  5. [5]
    J. Chamberlain, “Submillimeter-wave techniques,”High Frequency Dielectric Measurements, p. 105 IPC Science and Technology Press Ltd., 1972Google Scholar
  6. [6]
    J. R. Birch, G. J. Simonis, M. N. Afsar, R. N. Clarke, J. M. Dutta, H. M. Frost, X. Gerbaux, A. Hadini, W. F. Hall, R. Heidinger, W. W. Ho, C. R. Jones, F. Königer, R. L. Moore, H. Matuso, T. Nakano, W. Richter, K. Saki, M. R. Stead, U. Stumper, R. S. Vigil and T. B. Wells, “An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near millimeter wavelengths,”IEEE Trans. Microwave Theory Tech., vol. 42, no. 6, pp. 956–965, Jun. 1994.Google Scholar
  7. [7]
    M. Born and E. Wolf:Principles of Optics, Oxford: Pergamon Press, 1980.Google Scholar
  8. [8]
    J. W. Lamb and J. M. Payne: Private communication.Google Scholar
  9. [9]
    M. Halpern, H. P. Gush, E. Wishnow, and V. De Cosmo, “Far infrared transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast and various plastics,”Appl. Opt., vol. 25, no. 4, pp. 565–570, Feb. 1986.Google Scholar
  10. [10]
    R. W. Haas and P. W. Zimmerman, “22-GHz measurements of dielectric constants and loss tangents of castable dielectrics at room and cryogenic temperatures,”IEEE Trans. Microwave Theory Tech., vol. MTT-24, no. 11, pp. 882–883, Nov. 1976.Google Scholar
  11. [11]
    W. Meyer, “Variation of dielectric microwave losses in polyethylene as a result of different sample treatments,” inNonmetallic Materials and Composites, A. F. Clark, R. P. Reed, and G. Hartwig (Eds), Plenum: New York, 1979.Google Scholar
  12. [12]
    J. D. Cook, J. W. Zwart, K. J. Long, V. O. Heinen, and N. Stankiewicz, “An experimental apparatus for measuring surface resistance in the submillimeter-wavelength region,”Rev. Sci. Instrum., vol. 62. no. 10, pp. 2480–2485, Oct. 1991.Google Scholar
  13. [13]
    F. J. Tischer, “Excess conduction losses at millimeter wavelengths”,IEEE Trans. Microwave Theory Tech., vol. MTT-24, no. 11, pp. 853–858, Nov. 1976.Google Scholar
  14. [14]
    J. Sanford, “A Luneberg lens update,”IEEE Antennas and Propagat., vol. 37, no. 1, pp. 76–79, Feb. 1995.Google Scholar
  15. [15]
    M. N. Afsar, “Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers,”IEEE Trans. Instrum. Meas., vol. IM-36, no. 2, pp. 530–536, Jun. 1987.Google Scholar
  16. [16]
    V. V. Parshin, “Dielectric materials for gyrotron output windows,”Int. J. Infrared Millimeter Waves, vol. 15, no. 2, pp. 339–348, 1994.Google Scholar
  17. [17]
    M. N. Afsar, “Dielectric measurements of millimeter-wave materials,”IEEE Trans. Microwave Theory Tech., vol. MTT-32, no. 12, pp. 1598–1609, Dec. 1984.Google Scholar
  18. [18]
    G. J. Simonis and R. D. Felock, “Index of refraction determination in the near-millimeter wavelength range using a mesh Fabry-Perot resonant cavity,”Appl. Opt., vol. 22, no. 1, pp194–197, Jan. 1983.Google Scholar
  19. [19]
    J. M. Dutta, C. R. Jones, and H Davé, “Complex dielectric constants for selected near-millimeter-wave materials at 245 GHz,”IEEE Trans. Microwave Theory Tech., vol. MTT-34, no. 9, pp. 932–936, Sept. 1986.Google Scholar
  20. [20]
    U. Stumper, “Six-port and four-port reflectometers for complex permittivity measurements at submillimeter wavelengths,”IEEE Trans. Microwave Theory Tech., vol. 37, no. 1, pp. 222–230, Jan. 1989.Google Scholar
  21. [21]
    F. I. Shimabukuro, S. Lazar, M. R. Chernick, and H. B. Dyson, “A quasioptical method for measuring the complex permittivity of materials,”IEEE Trans. Microwave Theory Tech., vol. MTT-32, no. 7, pp. 659–665, Jul. 1984.Google Scholar
  22. [22]
    P. Goy and M. Gross, “Free space vector transmission-reflection from 18 to 760 GHz,”Proc. 24th European Microwave Conf. Cannes, France, pp. 1973–1978, Sep. 1994.Google Scholar
  23. [23]
    J. R. Birch, “Optical constants of some commercial microwave materials between 90 and 1200 GHz,”IEE Proc., vol. 130, Pt. H, no. 5, pp. 327–330, Aug. 1983.Google Scholar
  24. [24]
    A. R. Von Hipple:Dielectric Materials And Applications, New York: Wiley, 1954.Google Scholar
  25. [25]
    F. Sobel, F. L. Wentworth and J. C. Wiltse, “Quasi-optical surface waveguide and other components for 100 to 300 Gc region,”IRE Trans. Microwave Theory Tech., vol. MTT-9, no. 6, pp. 512–518, Nov. 1961.Google Scholar
  26. [26]
    J. R. Birch and F. P. Kong, “Birefringence and dichroism in Fluorogold at near-millimeter wavelengths,”Infrared Phys., vol. 26, no. 2, pp. 131–133, 1986.Google Scholar
  27. [27]
    G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. Alessandro, and S. Fonti, “Polarization properties of Fluorogold in the far-infrared,”Infrared Phys., vol. 22, pp. 185–186, 1982.Google Scholar
  28. [28]
    P. B. Whibberly and J. R. Birch, “The temperature variation of the near-mm wavelength optical constants of Fluorosint,”Infrared Phys., vol. 29, no. 6, pp. 995–996, 1989.Google Scholar
  29. [29]
    K. H. Breeden,et. al., “Complex permittivity measurements at millimeter wavelengths,”Dielectric Materials and Applications, pp. 50–53, IEE Conf. Pub. no. 67, 1970.Google Scholar
  30. [30]
    K. H. Breeden and A. P. Sheppard, “A note on the millimeter wave dielectric constant and loss tangent value of some common materials,”Radio Science, no. 2, p 205, Feb. 1968.Google Scholar
  31. [31]
    R. G. Jones, “Millimeter wave dielectric measurement using open resonators,”High Frequency Dielectric Measurements, pp. 78–83, IPC Science and Technology Press Ltd., 1972.Google Scholar
  32. [32]
    A. F. Harvey,Microwave Engineering, London: Academic Press, 1963Google Scholar
  33. [33]
    Q. Bingsheng, L. Chengjia, H. Jiangjun, and Q. Ruman, “Automatic measurement for dielectric properties of solid material at 890 GHz,”Int. J. Infrared Millimeter Waves, vol. 13, no. 6, pp. 923–931, 1992.Google Scholar
  34. [34]
    E. V. Loewenstein, D. R. Smith, and R. L. Morgan, “Optical constants of far infrared materials. 2: Crystalline solids”,Appl. Opt., vol. 12, no. 2, pp. 398–406, Feb. 1973.Google Scholar
  35. [35]
    D. T. Llewellyn-Jones, R. J. Knight, P. H. Moffat, and H. A. Gebbie, “New method of measuring low values of dielectric loss in the near millimetre wavelength region using untuned cavities,”IEE Proc., vol. 127, Pt. A. no. 8, pp. 535540, Nov. 1980.Google Scholar
  36. [36]
    J. R. Birch, J. D. Dromey and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,”Infrared Phys., vol. 21, pp. 225–228, 1981. (For numerical data, see also: J. R. Birch, J. D. Dromey and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,”NPL Report DES 69, National Physical Laboratory (UK), Feb. 1981)Google Scholar
  37. [37]
    J. W. Flemming and G. W. Chantry, “Accurate radiometric measurements on low-loss polymers at submillimetric wavelengths,”IEEE Trans. Instrum. Meas., vol. IM-23, no. 4, pp. 473–478, Dec. 1974.Google Scholar
  38. [38]
    J. R. Birch, “The far infrared optical constants of polyethylene,”Infrared Phys., vol. 30, no. 2, pp. 195–197, 1990.Google Scholar
  39. [39]
    K. Seeger, “Microwave measurement of the dielectric constant of high-density polyethylene,”IEEE Trans. Microwave Theory Tech., vol. 39, no. 2, pp. 352–354, Feb., 1991.Google Scholar
  40. [40]
    J. R. Birch and F. P. Kong, “An interferometer for the determination of the temperature variation of the complex refraction spectra of reasonably transparent solids at near-millimetre wavelengths,”Infrared Phys., no. 2/3, pp. 309–314, 1984.Google Scholar
  41. [41]
    J. R. Birch, “Systematic errors in dispersive Fourier transform spectroscopy in a non-vacuum environment,”Infrared Phys., vol. 34, no. 1, pp. 89–93, 1993.Google Scholar
  42. [42]
    W. L. Brooks,et al., “Absorption of millimeter waves in dielectric solids,”J. Opt. Soc. Am., vol. 43, pp. 1191–1194, Dec. 1953.Google Scholar
  43. [43]
    P. G. J. Irwin, P. A. R. Ade, S. B. Calcutt, S. B. Calcutt, F. W. Taylor, J. S. Seeley, R. Hunneman and L. Walton, “Investigation of dielectric spaced resonant mesh filter designs for PMIRR,”Infrared Phys., vol. 34, no. 6, pp. 549–563, 1993.Google Scholar
  44. [44]
    R. G. Fellers, “Measurements in the millimeter to micron range,”Proc. IEEE, vol. 55, no. 6, pp. 1003–1014, Jun. 1967.Google Scholar
  45. [45]
    M. N. Afsar, J. Chamberlain, and G. W. Chantry, “High-precision dielectric measurements on liquids and solids at millimeter and submillimeter wavelengths,”IEEE Trans. Instrum. Meas., vol. IM-25, no. 4, pp. 290–294, Dec. 1976.Google Scholar
  46. [46]
    G. E. Conklin, “Measurement of the dielectric loss tangent of isotropic films at millimeter wavelengths,”Rev. Sci. Instrum., vol. 36, no. 9, pp. 1347–1349, Sep. 1965.Google Scholar
  47. [47]
    P. A. R. Ade, J. Acres, and W. R. Van der Reijden, “Reflection and absorption coefficients of Melinex at 338 μ,”Infrared Phys., vol. 11, pp. 233–235, 1971.Google Scholar
  48. [48]
    G. W. Chantry, “Optical materials for the submillimeter wave band,”High Frequency Dielectric Measurements, pp. 117–121, IPC Science and Technology Press Ltd., 1972.Google Scholar
  49. [49]
    J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polysytrene,”Infrared Phys., vol. 6, no.1, pp. 33–38, 1992. (For numerical data, see also “The far-infrared optical constants of some common poyymers,”NPL Report DES 111, National Physical Laboratory (UK), Jun. 1991)Google Scholar
  50. [50]
    W. Culshaw and M. V. Anderson, “Measurement of permittivity and dielectric loss with a mm-wave Fabry-Perot interferometer,”IEE Proc., vol. 109, Pt. B, Supp. 23, pp. 820–826, 1961.Google Scholar
  51. [51]
    R. G. Jones, “Dielectric measurements at mm wavelengths using open resonators,”Dielectric Materials and Applications, pp. 141-144-53, IEE Conf. Pub. no. 129, 1975.Google Scholar
  52. [52]
    R. J. Cook, R. G. Jones, and C. B. Rosenberg, “Comparison of cavity and open resonator measurements of permittivity and loss angle,”IEEE Trans. Instrum. Meas., vol. IM-23, no. 4, pp. 438–442, Dec. 1974.Google Scholar
  53. [53]
    V. B. Braginsky, V. S. Ilchenko, “Experimental observations of fundamental microwave absorption in high-quality dielectric crystals,”Phys. Lett., vol. 120, no. 6, pp. 300–305, Mar. 1987.Google Scholar
  54. [54]
    M. N. Afsar and H. Chi, “Window materials for high power gyrotron,”Int. J. Infrared Millimeter Waves, vol. 15, no. 7, pp. 1161–1179, 1994.Google Scholar
  55. [55]
    V. V. Parshin, R. Heidinger, B. A. Andreev, A. V. Gusev, and V. B. Shmagin, “Silicon as an advanced window material for high power gyrotrons.”Int. J. Infrared and Millimeter Waves, vol. 16, no. 5, pp. 864–877, 1995.Google Scholar
  56. [56]
    M. N. Afsar and H. Chi: “Millimeter wave complex refractive index, complex dielectric permittivity and loss tangent of extra high putity and compensated silicon,”Int. J. IR and Millimeterwaves, vol. 15, no. 7, pp. 1181–1188, 1994.Google Scholar
  57. [57]
    J. R. Birch and E. A. Nichol, “The FIR optical constants of the polymer TPX,”Infrared Phys., vol. 24, no. 6, pp. 573–575, 1984.Google Scholar
  58. [58]
    C. Meny, J. Léotin, and J. R. Birch, “Temperature variation of the near millimetre wavelength optical constants of TPX,”Infrared Phys., vol. 31, no. 2, pp. 211–213, 1991.Google Scholar
  59. [59]
    J. R. Birch, E. A. Nichol, and R. L. T. Street, “New near-millimeter wavelength radome material”,Appl. Opt., vol. 22, pp. 2947–2949, Oct. 1983.Google Scholar
  60. [60]
    A. R. Kerr, N. J. Bailey, D E. Boyd and N. Horner, “A study of materials for a broadband millimeter-wave quasi-optical vacuum window”,Electronics Division Internal Report No. 292, NRAO, Aug. 1992.Google Scholar
  61. [61]
    A. Karpov, “Properties of polystyrene foams in 300–600 GHz range,”IRAM Technical Report, Aug. 1993.Google Scholar
  62. [62]
    H. Hemmati, J. C. Mather and W. L. Eichorn. “Submillimeter and millimeter wave characterization of absorbing materials,”Appl. Opt., vol. 24, no. 24, pp. 4489–4492, Dec. 1985.Google Scholar
  63. [63]
    J. B. Peterson and P. L. Richards, “A cryogenic blackbody for millimeter wavelengths”,Int. J. Infrared Millimeterwaves., vol. 5, no. 12, pp. 1507–1515, 1984Google Scholar
  64. [64]
    L. Pettersson, “Tests of some mm-wave materials,”Electronics Division Internal Report No. 122, Aug. 1972.Google Scholar
  65. [65]
    F. Mattiocco, “Absorber measurements between 80 and 115 GHz”,IRAM Internal Report, Apr. 1994.Google Scholar
  66. [66]
    F. Mattiocco,IRAM Technical Note, Jun. 1994.Google Scholar
  67. [67]
    G. Schwartz, “Thermal expansion of polymers from 4.2 K to room temperature,”Cryogenics, vol. 28, pp. 248–254, Apr. 1988.Google Scholar
  68. [68]
    A. C. Rose-Innes,Low Temperature Techniques, The English University Press, 1973.Google Scholar
  69. [69]
    A. P. D. Stewart and J. W. Lamb, Private communication.Google Scholar
  70. [70]
    G. E. Childs, L. J. Ericks, and R. L. Powell:Thermal Conductivity of Solids at Room Temperature and Below, NBS Monograph 131, 1973.Google Scholar
  71. [71]
    J. B Beyer and E. H. Scheibe, “Loss measurements of the beam waveguide,”IEEE Trans. Microwave Theory Tech., vol. MTT-11, no. 1, pp. 18–22, Jan. 1963.Google Scholar
  72. [72]
    N. Marcuvitz:Waveguide Handbook, London: Peter Peregrinus, 1986.Google Scholar
  73. [73]
    J. J. Bock, M. K. Parikh, M. L. Fischer, and A. E. Lange, “Emissivity measurements of reflective surfaces at near-millimeter wavelengths,”Appl. Optics, vol. 34, no. 22, pp 4812–16, Aug. 1995.Google Scholar
  74. [74]
    J. W. Zwart, V. O. Heinen, K. Long, and N. Stankiewicz: “Surface resistance measurements at 377 GHz,”Int. J. Infrared and Millimeter Waves, vol. 17, no. 2, pp 349–357, 1996.Google Scholar
  75. [75]
    H. Matuso, J. Inatani, N. Kuno, K. Miyazawa, K. Okumura, T. Kasuga, and H. Murakami, “Submillimeter-wave telescope onboard a sounding rocket,”SPIE Proc., San Diego, 1994.Google Scholar
  76. [76]
    R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of evaporated gold at 890 GHz”,IEEE Trans. Microwave Theory Tech., vol. MTT-25, no. 6, pp. 488–491, Jun. 1977.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • James W. Lamb
    • 1
  1. 1.Institut de Radio Astronomie MillimétriqueDomaine Universitaire de GrenobleSt-Martin d'Hères CedexFrance

Personalised recommendations