Advertisement

Foundations of Physics

, Volume 26, Issue 3, pp 401–412 | Cite as

Quasi-probability distributions for arbitrary spin-j particles

  • G. Ramachandran
  • A. R. Usha Devi
  • P. Devi
  • Swarnamala Sirsi
Article

Abstract

Quasi-probability distribution functions fjWW, fjMM for quantum spin-j systems are derived based on the Wigner-Weyl, Margenau-Hill approaches. A probability distribution fjsph which is nonzero only on the surface of the sphere of radius √j(j+1) is obtained by expressing the characteristic function in terms of the spherical moments. It is shown that the Wigner-Weyl distribution function turns out to be a distribution over the sphere in the classical limit.

Keywords

Distribution Function Probability Distribution Characteristic Function Classical Limit Spherical Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Margenau and R. N. Hill,Prog. Theor. Phys. 26, 722 (1961).Google Scholar
  2. 2.
    A. R. Usha Devi, Swarnamala Sirsi, G. Devi, and G. Ramachandran,J. Phys. G: Nucl. Part. Phys. 20, 1859 (1994).Google Scholar
  3. 3.
    L. Cohen and M. O. Scully,Found. Phys. 16, 295 (1986).Google Scholar
  4. 4.
    C. Chandler, L. Cohen, C. Lee, M. Scully, and K. Wodkiewicz,Found. Phys. 22, 867 (1992).Google Scholar
  5. 5.
    G. Ramachandran, V. Ravishankar, S. N. Sandhya, and Swarnamala Sirsi,J. Phys. G: Nucl. Phys. 13, L271 (1987).Google Scholar
  6. 6.
    G. Ramachandran, Swarnamala Sirsi, and G. Devi,Perspectives in Theoretical Nuclear Physics, K. Srinivasa Rao and L. Satpathy, eds. (Wiley Eastern, 1994), p. 76.Google Scholar
  7. 7.
    U. Fano,Rev. Mod. Phys. 29, 74 (1957).Google Scholar
  8. 8.
    M. Hillery, R. O'Connell, M. O. Scully, and E. P. Wigner,Phys. Rep. 106, 121 (1984).Google Scholar
  9. 9.
    R. L. Stratonovich,Sov. Phys. JETP 4, 891 (1957).Google Scholar
  10. 10.
    J. C. Varilly and J. M. Gracia-Bondia,Ann. Phys. (Leipzig) 180, 107 (1989).Google Scholar
  11. 11.
    F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas,Phys. Rev. A6, 2211 (1972).Google Scholar
  12. 12.
    E. H. Lieb,Commun. Math. Phys. 31, 327 (1973).Google Scholar
  13. 13.
    G. S. Agarwal,Phys. Rev. A24, 2889 (1981).Google Scholar
  14. 14.
    J. P. Dowling, G. S. Agarwal, and W. P. Schleich,Phys. Rev. A49, 4101 (1994).Google Scholar
  15. 15.
    C. R. Rao.Linear Statistical Inference and its Applications, 2nd edn. (Wiley, New York, 1973).Google Scholar
  16. 16.
    J. E. Moyal,Proc. Cambridge Philos. Soc. 45, 99 (1949).Google Scholar
  17. 17.
    G. R. Satchleret al. Proceedings, III International Symposium on Polarization Phenomena in Nuclear Reactions, H. H. Barschall and W. H. Haeberli, eds. (University of Wisconsin Press, Madison, 1970).Google Scholar
  18. 18.
    L. Cohen,J. Math. Phys. 7, 781 (1966).Google Scholar
  19. 19.
    S. P. Misra and T. S. Shankara,J. Math. Phys. 9, 299 (1968).Google Scholar
  20. 20.
    M. E. Rose,Elementary Theory of Angular Momentum (Wiley, New York, 1957).Google Scholar
  21. 21.
    M. E. Rose,J. Math. Phys. 3, 409 (1962).Google Scholar
  22. 22.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonkii,Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988), p. 149.Google Scholar
  23. 23.
    L. C. Biedenharn,Ann. Phys. (Leipzig) 4, 104 (1958).Google Scholar
  24. 24.
    G. Ramachandran and K. S. Mallesh,Nucl. Phys. A422, 327 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • G. Ramachandran
    • 1
  • A. R. Usha Devi
    • 1
  • P. Devi
    • 2
  • Swarnamala Sirsi
    • 1
  1. 1.Department of Studies in PhysicsUniversity of MysoreManasagangotri, MysoreIndia
  2. 2.Canton

Personalised recommendations