Skip to main content
Log in

Analysis of laser source nonlinearity due to longitudinal mode-hopping

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The nonlinearity of a frequency-ramped single-mode laser source to be used in optical heterodyne interferometry has been investigated. The analysis is based on mode-hopping due to variation in injection current, temperature and mismatch reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ribun Onodera, et al., “Effect of Laser-Diode Power Change on Optical Heterodyne Interferometry,”IEEE Journ. of Light. Tech., Vol. 13, No. 4, pp. 675–681, April 1995.

    Google Scholar 

  2. G. Economou, et al., “Limitations and Noise in Interferometric Systems Using Frequency Ramped Single-mode Diode Lasers,”IEEE Journ. of Light. Tech., Vol LT-4, pp. 1601–1608, 1986.

    Google Scholar 

  3. B. Rawat, et al., “Effect of Laser Source Linearity on Optical Heterodyne Interferometry,”International Journal of Infrared and Millimeter Waves, Vol. 17, No. 3, pp. 507–526, March 1996.

    Google Scholar 

  4. Y. Ishii, “Recent Developments in Laser Diode Interferometry,”Opt. Lasers Eng., Vol. 14, pp. 293–309, 1991.

    Google Scholar 

  5. D.A. Jackson, et al., “Pseudo-heterodyne Detection Scheme for Optical Interferometers,”Electron. Letters, Vol. 18, pp. 1081–1083, 1982.

    Google Scholar 

  6. M. Imai, et al., “Optical Heterodyne Displacement Measurement Using a Frequency Ramped Laser Diode,”Optical Communications, Vol. 78, pp. 113–117, 1990.

    Google Scholar 

  7. D. Uttam, et al., “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,”IEEE Journ. of Light. Tech., Vol. LT-3, pp. 971–977, 1985.

    Google Scholar 

  8. Mazin R. Alalusi, et al., “Effects of Nonlinear Gain on Mode-hopping in Semiconductor Laser Diodes,”IEEE Journ. of Quantum Electron., vol. 31, p. 1181–1192, 1995.

    Google Scholar 

  9. M. Nakamura, et al., “Longitudinal Mode Behavior of Mode Stabilized AlxGaI-xAs Injection Lasers,”Journ. of App. Phys., Vol. 49, pp. 4644–4648, Sept. 1978.

    Google Scholar 

  10. H. Kawamishi, et al., “Gain Suppression in GaAs/AlGaAs TJS Lasers,”IEEE J. Quantum Electron, Vol. QE-17, pp. 823–824, June 1981.

    Google Scholar 

  11. G.R. Gray, et al., “Bistability and Mode Hopping in a Semiconductor Laser,”J. Opt. Soc. Amer. B., Vol. 8, pp. 632–638, Mar. 1991.

    Google Scholar 

  12. K. Pettermann, et al., “Laser Diode Modulation and Noise,” Boston, MA: Kluwer Academic, 1991.

    Google Scholar 

  13. H. Ishikawa, et al., “Longitudinal Mode Behavior of Transverse Mode Stabilized InGaAsP/InP Double Heterostructure Lasers,”App. Phys. Letters., Vol. 38, pp. 962–964, June 1981.

    Google Scholar 

  14. J. Manning, et al., “Strong Influence of Nonlinear Gain on Spectral and Dynamic Characteristics of InGaAsP Lasers,”Electron. Lett., Vol. 12, pp. 496–497, May 1985.

    Google Scholar 

  15. R.F. Kazarinov, et al., “Longitudinal Mode Self Stabilization in Semiconductor Lasers,”Journ. Appl. Phys., Vol 53, pp. 4631–4644, July 1982.

    Google Scholar 

  16. B.N. Gomatam, et al., “Theory of Hot Carrier Effects on Nonlinear Gain in GaAs-GaAlAa Lasers and Amplifiers,”IEEE J. Quantum Electron., Vol. 26, pp. 1689–1704, Oct. 1990.

    Google Scholar 

  17. N. Ogasawara, et al., “Longitudinal Mode Competition and Asymmetric Gain Saturation in Semiconductor Injection Lasers - II Theory,”Jpn. J. Appl. Phys., vol. 27, pp. 615–626, 1988.

    Google Scholar 

  18. M. Yamada, et al., “A Condition of single Longitudinal Mode Operation in Injection Lasers with Index Guiding Structure,”IEEE J. Quantum Electron., Vol. QE-15, pp. 743–749, Aug. 1979.

    Google Scholar 

  19. R.F. Kazarinov, et al., “Longitudinal Mode Self Stabilization in semiconductor Lasers,”Journ. Appl. Phys., Vol. 53, pp. 4631–4644, July 1982.

    Google Scholar 

  20. P. Brosson, et al., “Optical Coupling of Two Injection Lasers: A New Experimental Approach to Study the Gain Broadening Mechanism,”IEEE J. Quantum Electron., Vol. QE-14, pp. 727–736, July 1982.

    Google Scholar 

  21. W.E. Lamb, Jr., “Theory of an Optical Maser,”Phys. Rev., Vol. 134, pp. A1429-A1450, June 1964.

    Google Scholar 

  22. G.P. Agrawal, “Gain Nonlinearities in Semiconductor Lasers: Theory and application to Distributed Feedback Lasers,”IEEE J. Quantum Electron, Vol. QE-23, pp. 860–868, June 1987.

    Google Scholar 

  23. T.P. Lee et al., “Short Cavity InGaAsP Injection Lasers: Dependence of Mode Spectra and Single-longitudinal Mode Power on Cavity Length,”IEEE J. Quantum Electron. Vol. QE-18, pp. 1101–1113, July 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillers, R.B., Rawat, B.S. Analysis of laser source nonlinearity due to longitudinal mode-hopping. Int J Infrared Milli Waves 17, 1809–1820 (1996). https://doi.org/10.1007/BF02069456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069456

Keywords

Navigation