Skip to main content
Log in

Intersystem crossing in Fe(II) coordination compounds

  • Invited Papers
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Fe(II) spin-crossover systems can be quantitatively converted from the low-spin (LS) to the high-spin (HS) state well below the thermal transition temperature by irradiating either into the metal-ligand charge transfer or d-d absorption bands, and even in low-spin systems a transient population of the HS state can be achieved. This fact can be made use of to determine HS → LS relaxation rate constants for a wide variety of Fe(II) spin-crossover and low-spin systems. The HS → LS relaxation shows strong deviations from an Arrhenius behaviour, with nearly temperature-independent tunnelling below ∼70 K and a thermally activated process above ∼100 K. The range of more than 12 orders of magnitude in the low temperature tunnelling rate constant can be understood in terms of a non-adiabatic multiphonon process, where in the strong vibronic coupling limit an inverse energy gap law holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gütlich, in:Chemical Mössbauer Spectroscopy, ed. R.H. Herber (Plenum Press, New York, 1984) p. 27.

    Google Scholar 

  2. S. Decurtins, P. Gütlich, K.M. Hasselbach, H. Spiering and A. Hauser, Inorg. Chem. 24(1985)2174.

    Google Scholar 

  3. R.H. Herber, Inorg. Chem. 26(1987)173.

    Google Scholar 

  4. R.L. Martin and A.H. White, in:Transition Metal Chemistry, Vol. 4, ed. R.L. Carlin (Marcel Dekker, New York, 1986) p. 113;

    Google Scholar 

  5. H.A. Goodwin, Coord. Chem. Rev. 18(1976)293;

    Google Scholar 

  6. P. Gütlich, Structure and Bonding 44(1981)83.

    Google Scholar 

  7. J.K. Beattie, Adv. Inorg. Chem. 32(1988)1;

    Google Scholar 

  8. M. Bacci, Coord. Chem. Rev. 86(1988)245.

    Google Scholar 

  9. P. Adler, H. Spiering and P. Gütlich, Inorg. Chem. 26(1987)3840;

    Google Scholar 

  10. P. Adler, A. Hauser, A. Vef, H. Spiering and P. Gütlich, Hyp. Int. 47(1989)343.

    Google Scholar 

  11. E. König, Structure and Bonding 76(1991)51.

    Google Scholar 

  12. S. Decurtins, P. Gütlich, C.P. Köhler, H. Spiering and A. Hauser, Chem. Phys. Lett. 139(1984)1.

    Google Scholar 

  13. A. Hauser, J. Chem. Phys. 94(1991)2741.

    Google Scholar 

  14. J.K. McCusker, K.N. Walda, R.C. Dunn, J.D. Simon, D. Magde and D.N. Hendrickson, J. Am. Chem. Soc. 114(1992)6919;

    Google Scholar 

  15. J.K. McCusker, K.N. Walda, R.C. Dunn, I.D. Simon, D. Magde and J.N. Hendrickson, J. Am. Chem. Soc. 115(1993)298.

    Google Scholar 

  16. E.V. Dose, M.A. Hoselton, N. Sutin, M.F. Tweedle and L.J. Wilson, J. Am. Chem. Soc. 100(1978)1141.

    Google Scholar 

  17. J.K. Beattie, R.A. Binstead and R.J. West, J. Am. Chem. Soc. 100(1978)3044;

    Google Scholar 

  18. J.K. Beattie and K.J. McMahon, Austr. J. Chem. 41(1989)1315.

    Google Scholar 

  19. J.J. McGarvey and I. Lawthers, J. Chem. Soc. Chem. Commun. (1982) 906;

  20. J.J. McGarvey, I. Lawthers, K. Heremans and H. Toftlund, Inorg. Chem. 29(1990)252.

    Google Scholar 

  21. H. Toftlund, Coord. Chem. Rev. 97(1989)67.

    Google Scholar 

  22. A. Hauser, Coord. Chem. Rev. 111(1991)275.

    Google Scholar 

  23. C.-L. Xie and D.N. Hendrickson, J. Am. Chem. Soc. 109(1987)6981.

    Google Scholar 

  24. A. Hauser, A. Vef and P. Adler, J. Chem. Phys. 95(1991)8710.

    Google Scholar 

  25. A.D. Kirk, P.E. Hoggard, G.B. Porter and M.W. Windsor, Chem. Phys. Lett. 37(1976)199.

    Google Scholar 

  26. S. Deisenroth, A. Hauser, H. Spiering and P. Gütlich, these Proceedings, Hyp. Int.

  27. A. Hauser, Chem. Phys. Lett. 192(1992)65.

    Google Scholar 

  28. A. Hauser, J. Adler and P. Gütlich, Chem. Phys. Lett. 152(1988)468.

    Google Scholar 

  29. E. Buhks, G. Navon, M. Bixon and J. Jortner, J. Am. Chem. Soc. 102(1980)2918.

    Google Scholar 

  30. C.J. Donnelly and G.F. Imbusch, in:Advances in Noradiative Processes in Solids, ed. B. DiBartolo, NATO ASI B249 (Plenum Press, New York, 1991) p. 175.

    Google Scholar 

  31. M.A. Hoselton, L.J. Wilson and R.S. Drago, J. Am. Chem. Soc. 97(1975)1722;

    Google Scholar 

  32. B.A. Katz and C.E. Strouse, J. Am. Chem. Soc. 101(1979)6214;

    Google Scholar 

  33. M. Mikami-Kido and Y. Saito, Acta Cryst. B38(1982)452;

    Google Scholar 

  34. L. Wiehl, G. Kiel, C.P. Köhler, H. Spiering and P. Gütlich, Inorg. Chem. 25(1986)1565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, A., Adler, P., Deisenroth, S. et al. Intersystem crossing in Fe(II) coordination compounds. Hyperfine Interact 90, 77–87 (1994). https://doi.org/10.1007/BF02069119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069119

Keywords

Navigation