Skip to main content
Log in

Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin inStreptococcus lactis andLeuconostoc mesenteroides

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Aerobic glucose dissimilation of washed cells ofStreptococcus lactis grown in peptone-glucose-yeast extract medium is characterized by the formation of large amounts of lactic acid, a small amount of acetic acid, and traces of acetoin: a corresponding amount of oxygen is taken up. Aerobic metabolism by washed cells ofS. lactis andLeuconostoc mesenteroides is far more oxidative when the cells have been grown on peptone-glucose-yeast extract agar supplied with 10 ppm of hemin than when they have been grown in the absence of hemin. In the former case respiration is strongly inhibited by KCN and only slightly by bis(tributylgermanium) oxide, (Bu3Ge)2O. Respiration of cells grown without hemin, on the other hand, is strongly inhibited by (Bu3Ge)2O but only moderately by KCN. In cells grown in the presence of hemin, spectra of ana 2- andb-type cytochrome were recognized but not in cells grown without hemin. The NADH-oxidase activity of such cells is not affected by KCN.

Our results strongly suggest that by growth in the presence of hemin a cytochrome-mediated respiration system is induced which replaces, in part, the NADH-oxidase-mediated respiration. Whereas the latter is sensitive to (Bu3Ge)2O, the former apparently is little or not. However it is quite sensitive to KCN.

When hemin is added to washed cells ofS. lactis grown without hemin the rate of oxygen uptake increases immediately though no cytochromes are present and respiration remains sensitive to (Bu3Ge)2O. Possibly hemin stimulates the NADH-oxidase activity of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bartsch, R. G. 1968. Bacterial cytochromes. - Ann. Rev. Microbiology22: 181–200.

    Google Scholar 

  • Bryan-Jones, D. G. andWhittenbury, R. 1969. Haematin-dependent oxidative phosphorylation inStreptococcus faecalis. - J. Gen. Microbiol.58: 247–260.

    Google Scholar 

  • Chuang, L. F. andCollins, E. B. 1968. Biosynthesis of diacetyl in bacteria and yeast. - J. Bacteriol.95: 2083–2089.

    Google Scholar 

  • Cremer, J. E. andAldridge, W. N. 1964. Toxicological and biochemical studies of some trialkylgermanium compounds. - Brit. J. Industr. Med.21: 214–217.

    Google Scholar 

  • DeMoss, R. D., Gunsalus, I. C. andBard, R. C. 1953. A glucose-6-phosphate dehydrogenase inLeuconostoc mesenteroides. - J. Bacteriol66: 10–16.

    Google Scholar 

  • Gallin, J. I. andVanDemark 1964. Evidence for oxidative phosphorylation inStreptococcus faecalis. - Biochem. Biophys. Res. Commun.17: 630–635.

    Google Scholar 

  • van den Hamer, C. J. A. 1960. The carbohydrate metabolism of the lactic acid bacteria. - Doctoral dissertation. Utrecht, Holland.

  • Hullin, R. P. andNoble, R. L. 1953. The determination of lactic acid in microgram quantities. - Biochem. J.55: 289–291.

    Google Scholar 

  • Johnson, M. K. andMcCleskey, C. S. 1957. Studies on the aerobic carbohydrate metabolism ofLeuconostoc mesenteroides. - J. Bacteriol.74: 22–25.

    Google Scholar 

  • Johnson, M. K. andMcCleskey, C. S. 1958. Further studies on the aerobic metabolism ofLeuconostoc mesenteroides. - J. Bacteriol.75: 98–101.

    Google Scholar 

  • Kaars Sijpestijn, A. 1968. Growth inhibition of bacteria by tributylgermanium acetate and its reversal by blood constituents.- Antonie van Leeuwenhoek34: 85–92.

    Google Scholar 

  • Kaars Sijpestijn, A., Rijkens, F., van der Kerk, G. J. M. andManten, A. 1964. Antimicrobial activity of trialkylgermanium acetates and the influence of the medium. - Antonie van Leeuwenhoek30: 113–120.

    Google Scholar 

  • Lowry, O. H., Roseborough, N. J., Farr, A. L. andRandall, R. J. 1951. Protein measurements with the Folin phenol reagent. - J. Biol. Chem.193: 265–275.

    Google Scholar 

  • Mickelson, M. N. 1967. Aerobic metabolism ofStreptococcus agalactiae. - J. Bacteriol.94: 184–191.

    Google Scholar 

  • Mickelson, M. N. 1969. Phosphorylation and the reduced nicotinamide adenine dinucleotide oxidase reaction inStreptococcus agalactiae. - J. Bacteriol.100: 895–901.

    Google Scholar 

  • Neish, A. C. 1952. “Analytical methods for bacterial fermentations”. - Report 46-8-3 (second revision) Natl. Res. Council Canada, Saskatoon.

    Google Scholar 

  • O'Kane, D. J. 1950. Influence of the pyruvate oxidation factor on the oxidative metabolism of glucose byStreptococcus faecalis. - J. Bacteriol.60: 449–458.

    Google Scholar 

  • Rijkens, F. andvan der Kerk, G. J. M. 1964. Organogermanium chemistry. - Germanium Research Committee (Institute for Organic Chemistry TNO, Utrecht, Holland).

    Google Scholar 

  • Smalley, A. J., Jahrling, P. andVan Demark, P. J. 1968. Molar growth yield as evidence for oxidative phosphorylation inStreptococcus faecalis strain 10C1. - J. Bacteriol.96: 1595–1600.

    Google Scholar 

  • Shibata, K. 1959. Spectrophotometry of translucent biological materials — opal glass transmission method, p. 77–109.In D. Glick, [ed.]. Methods of biochemical analysis. Vol. VII. Interscience, New York.

    Google Scholar 

  • Speckman, R. A. andCollins, E. B. 1968. Diacetyl biosynthesis inStreptococcus diacetilactis andLeuconostoc citrovorum. - J. Bacteriol.95: 174–180.

    Google Scholar 

  • Swartling, P. F. 1951. Biochemical and serological properties of some citric acid fermenting streptococci from milk and dairy products. - J. Dairy Res.18: 256–267.

    Google Scholar 

  • Vakil, J. R. andShahani, K. M. 1969. Carbohydrate metabolism of lactic acid cultures. III. Glycolytic enzymes ofStreptococcus lactis and their sensitivity to antibiotics. - Can. J. Microbiol.15: 753–759.

    Google Scholar 

  • Whittenbury, R. 1964. Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. - J. Gen. Microbiol.35: 13–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author gratefully acknowledges the skilful technical assistance of Mrs. A. J. M. Dekkers-van der Mark and the able performance of gas chromatographic determinations by Miss E. Ch. Th. Gevers and Mrs. G. G. Versluisde Haan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sijpesteijn, A.K. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin inStreptococcus lactis andLeuconostoc mesenteroides . Antonie van Leeuwenhoek 36, 335–348 (1970). https://doi.org/10.1007/BF02069035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069035

Keywords

Navigation