Hyperfine Interactions

, Volume 86, Issue 1, pp 753–759 | Cite as

A study of diamagnetic muon bonding in α-quartz using muon spin resonance

  • W. K. Dawson
  • K. Nishiyama
  • K. Nagamine
Session 5. Semiconductors and Insulators


Diamagnetic muon spin resonance experiments were carried out in a-quartz at two temperatures: 300 K and 130 K. A strong diamagnetic resonance peak was observed at both temperatures. The spectrum exhibits an anisotropy in the chemical shift of 15 ppm (300K) and 25 ppm (130K).


Thin Film Anisotropy Chemical Shift Resonance Peak Resonance Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Schenck,Muon Spin Rotation Spectroscopy (Hilger, Bristol, 1985) ch. 7.Google Scholar
  2. [2]
    C. Boekema, “Muon Spin Research in Oxide Materials”, in:The Time Domain in Dynamics, G. Long and F. Grandjean, eds. (Kluwer Academic, Dodrecht, 1988) pp. 377–438; C. Boekema, W.K. Dawson, J.C. Lam, R.L. Lichti, and D.W. Cooke, Phys. Rev. B, submitted.Google Scholar
  3. [3]
    J.H. Breweret al., Hyperfine Interactions63 (1990) 177.Google Scholar
  4. [4]
    K. Nishiyama, “Muon Spin Resonance Spectroscopy”, in:Perspectives of Meson Science, T. Yamazaki, K. Nakai, and K. Nagamine, eds. (Elsevier Science Publishers B.V., Amsterdam, 1992) pp. 199–219; and references therein.Google Scholar
  5. [5]
    J.B. Heaney, K.P. Stewart, and Georg Hass, Applied Optics22 (1983) 4069.Google Scholar
  6. [6]
    B. Viard and P. Zecchini, Analyst117 (1992) 329; G. Hass and W. R. Hunter, Applied Optics17 (1978) 2310.Google Scholar
  7. [7]
    J.H. Brewer, Hyperfine Interactions8 (1981) 375; J.H. Brewer, D.P. Spencer, D.G. Fleming, and J.A.R. Coope, Hyperfine Interactions8 (1981) 405.Google Scholar
  8. [8]
    W.K. Dawson, Masters Thesis, San Jose State University, 1991 (and references).Google Scholar
  9. [9]
    A. Kats, Philips Res. Repts.17 (1962) 133–279. This is the most comprehensive treatise available and a classic work.Google Scholar
  10. [10]
    H. Eckert, J.P. Yesinowski, L.A. Silver, and E.M. Stolper, J. Phys. Chem.92 (1988) 2055.Google Scholar
  11. [11]
    T.W.G. Solomons,Organic Chemistry, 3rd ed. (John Wiley & Sons, Inc, N.Y., 1984) ch. 12.Google Scholar
  12. [12]
    C. McMichael Rohlfing, L.C. Allen, and R. Ditchfield, J. Chem. Phys.79 (1983) 4958.Google Scholar
  13. [13]
    D.L. Griscom, J. Non-Crystalline Solids73 (1985) 51. A comprehensive work on the type of defects seen in SiO2. D.H. Levy, K.K. Gleason, M. Rothschild, J.H.C. Sedlacek, and R. Takke, Appl. Phys. Lett.60 (1992) 1667; D.L. Griscom, Phys. Rev.B 22 (1980) 4192; Ts-E. Tsai and D.L. Griscom, J. Non-Crystalline Solids91 (1987) 170.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • W. K. Dawson
    • 1
    • 2
  • K. Nishiyama
    • 1
  • K. Nagamine
    • 1
    • 2
  1. 1.Meson Science LaboratoryUniversity of TokyoTokyoJapan
  2. 2.Institute of Physical and Chemical Research (RIKEN)SitamaJapan

Personalised recommendations