New expressions for depolarization dyadics in uniaxial dielectric-magnetic media

  • W. S. Weiglhofer
  • A. Lakhtakia


We present some novel expressions for the depolarization dyadics in uniaxial dielectric-magnetic media. These expressions were obtained by generalizing the Fikioris approach for extracting the singular behaviour of integrals involving the dyadic Green functions and the source current density distributions. Cubical, cylindrical and spherical geometries serve as examples for a discussion of the depolarization dyadics' dependence on geometry and anisotropy.


Field singularity Rayleigh approximation uniaxial media canonical geometries depolarization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Lakhtakia (ed.):Selected Papers on Linear Optical Composite Materials (SPIE Opt. Engg. Press, Bellingham, WA, USA, 1996).Google Scholar
  2. [2]
    J. van Bladel: Some remarks on Green's dyadic for infinite space.IRE Trans. Antennas Propagat. 9 (1961) 563–566.Google Scholar
  3. [3]
    J. van Bladel:Singular Electromagnetic Fields and Sources (Clarendon Press, Oxford, 1991).Google Scholar
  4. [4]
    A.D. Yaghjian: Electric dyadic Green's function in the source region.Proc. IEEE 68 (1980) 248–263.Google Scholar
  5. [5]
    J.G. Fikioris: Electromagnetic field inside a current-carrying region.J. Math. Phys. 6 (1965) 1617–1620.Google Scholar
  6. [6]
    J.J.H. Wang: A unified and consistent view on the singularities of the electric dyadic Green's function in the source region.IEEE Trans. Antennas Propagat. 30 (1982) 463–468.Google Scholar
  7. [7]
    B. Jakoby and F. Olyslager: Singularity in Green dyadics for uniaxial bianisotropic media.Electron. Lett. 31 (1995) 779–781.Google Scholar
  8. [8]
    A. Lakhtakia and B. Shanker: Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell-Garnett model.Int. J. Appl. Electromagn. Mater. 4 (1993) 65–82.Google Scholar
  9. [9]
    A. Lakhtakia and W.S. Weiglhofer: Time-harmonic electromagnetic fields in source regions in a simple uniaxial bianisotropic medium.Int. J. Appl. Electromagn. Mater. 5 (1994) 101–108.Google Scholar
  10. [10]
    A. Lakhtakia and W.S. Weiglhofer: Time-harmonic electromagnetic field in a source region in a uniaxial dielectric-magnetic medium.Int. J. Appl. Electromagn. Mech. (1996) submitted;Department of Mathematics, University of Glasgow Preprint 96/33, 19 April 1996.Google Scholar
  11. [11]
    D.F. Herrick and T.B.A. Senior: The dipole moments of a dielectric cube.IEEE Trans. Antennas Propagat. 25 (1977) 590–592.Google Scholar
  12. [12]
    B. Michel: Private communication (1996).Google Scholar
  13. [13]
    A. Lakhtakia, B. Michel and W.S. Weiglhofer: Anisotropy and the Maxwell Garnett and the Bruggeman formalisms for uniaxial particulate composite media. Manuscript in preparation (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • W. S. Weiglhofer
    • 1
  • A. Lakhtakia
    • 2
  1. 1.Department of MathematicsUniversity of GlasgowGlasgowScotland, Great Britain
  2. 2.CATMAS-Computational & Theoretical Materials Sciences Group Department of Engineering Science and MechanicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations