Theoretical and Mathematical Physics

, Volume 104, Issue 3, pp 1129–1140 | Cite as

Polynomial supersymmetry and dynamical symmetries in quantum mechanics

  • A. A. Andrianov
  • M. V. Ioffe
  • D. N. Nishnianidze


A polynomial generalization of supersymmetry in quantum mechanics in one and two dimensions is proposed. Polynomial superalgebras in one dimension are classified. In two dimensions, a detailed analysis is made for supercharges of second order with respect to derivatives and it is shown that in all cases the binomial superalgebra leads to hidden dynamical symmetry generated by the central charge.


Detailed Analysis Quantum Mechanic Central Charge Dynamical Symmetry Polynomial Generalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. É. Gendenshtein and I. V. Krive,Usp. Fiz. Nauk,146, 553 (1985).Google Scholar
  2. 2.
    A. Lahiri, P. K. Roy, and B. Bagghi,Int. J. Mod. Phys. A,5, 1383 (1990).Google Scholar
  3. 3.
    Th. F. Moutard,C. R. Acad. Sci. Paris 80, 729 (1875);J. de L'Ecole Politech. Chier.,45, 1 (1879); G. Darboux,C. R. Acad. Sci. Paris,92, 1456 (1882).Google Scholar
  4. 4.
    L. Infeld and T. E. Hull,Rev. Mod. Phys.,23, 21 (1951).Google Scholar
  5. 5.
    E. Witten,Nucl. Phys. B,188, 513 (1981);202, 253 (1982).Google Scholar
  6. 6.
    A. A. Andrianov, M. V. Ioffe, and V. P. Spiridonov,Phys. Lett. A,174, 273 (1993).Google Scholar
  7. 7.
    A. A. Andrianov, F. Cannata, J.-P. Dedonder, and M. V. Ioffe, “Second-order derivative SUSY and scattering problem,” Preprint SPBU-IP-94-03 (1994), to be published inInt. J. Mod. Phys. Google Scholar
  8. 8.
    A. A. Andrianov, N. V. Borisov, and M. V. Ioffe,Teor. Mat. Fiz.,61, 183 (1984);Phys. Lett. A,105, 19 (1984).Google Scholar
  9. 9.
    A. A. Andrianov, N. V. Borisov, M. V. Ioffe, and M. N. Éides,Teor. Mat. Fiz.,61, 17 (1984);Phys. Lett. A,109, 143 (1985).Google Scholar
  10. 10.
    W. Miller, Jr.,Symmetry and Separation of Variables, Addison-Wesley, London (1977).Google Scholar
  11. 11.
    A. A. Andrianov and M. V. Ioffe,Phys. Lett. B,205, 507 (1988).Google Scholar
  12. 12.
    A. A. Andrianov, M. V. Ioffe, and Tssyu-Chzhun-Pin,Vestn. Leningr. Univ.,4, 3 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. A. Andrianov
    • 1
  • M. V. Ioffe
    • 1
  • D. N. Nishnianidze
    • 1
  1. 1.Institute of PhysicsSt. Petersburg State UniversityUSSR

Personalised recommendations