Theoretical and Mathematical Physics

, Volume 104, Issue 3, pp 1104–1107 | Cite as

Weyl connection, non-Abelian gauge field, and torsion

  • B. M. Barbashov
  • A. B. Pestov


It is shown that the congruent transport introduced by Weyl in 1921 determines a non-Abelian gauge field. The simplest gaugeinvariant equations of this field are proposed. Its connection with torsion is discussed.


Gauge Field Weyl Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Weyl,Sitzungsber. Berl. Acad., 465 (1918).Google Scholar
  2. 2.
    S. W. Hawking and G. F. R. Ellis,The Large-Scale Structure of Spacetime, Cambridge University Press, Cambridge (1973).Google Scholar
  3. 3.
    H. Weyl,Space—Time—Matter, Dover Publications: INC (1922).Google Scholar
  4. 4.
    J. Schouten,Ricci-Calculus, Berlin (1954).Google Scholar
  5. 5.
    A. A. Slavnov and L. D. Faddeev,Gauge Fields, Introduction to Quantum Theory (Frontiers in Physics, Vol. 50), Reading, Mass. (1980).Google Scholar
  6. 6.
    B. M. Barbashov, A. A. Leonovoch, and A. B. Pestov,Yad. Fiz.,38, No. I(7) (1983).Google Scholar
  7. 7.
    F. W. Hehl, von der Heyde, G. D. Kerlick, and J. M. Nester,Rev. Mod. Phys.,48, 393 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • B. M. Barbashov
    • 1
    • 2
  • A. B. Pestov
    • 1
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubna
  2. 2.N. N. Bogolyubov Laboratory of Theoretical PhysicsUSSR

Personalised recommendations