Skip to main content
Log in

Synthesis and identification of graft copolymers of wood pulp and styrene

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Based on the graft copolymerization reactions of lignin and vinyl monomers, a series of graft copolymers of wood pulp and styrene (1-phenylethene) has been synthesized. The wood pulps used in this research are unbleached products produced by chemical, thermal, and mechanical pulping. All of them contain a high content of lignin (25–29 wt%). The grafting reaction is a free radical polymerization coinitiated by calcium chloride, hydrogen peroxide, and wood pulp in dimethylsulfoxide at 30°C. The effect of reaction temperature, reaction time, and the amount of the reactants on the conversion of monomer, yield of product, weight increase of pulp, and grafting efficiency of monomer has been studied. The grafted wood pulp was separated from homopolystyrene formed during the reaction by extraction of the reaction product with benzene in a Soxhlet apparatus for at least 48 h. The results show that after the reaction, the weight of all wood pulps was significantly increased and the weight increase of very high yield sodium bisulfite pulp (VHYS) was 333%. This proves that a part of the polymerized styrene was chemically bound to the wood pulp. The Fourier transform infrared (FTIR) spectra of the extracted products show absorbance peaks characteristic of both wood and polystyrene and, thus, provide strong proof of grafting. Grafting has completely changed the surface properties of the starting wood pulp from hydrophilic to hydrophobic, and under ordinary thermal compression conditions, thermoplastic composite objects of good uniformity can be made directly from reaction products which contain up to 52 wt% wood pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Meister, D. R. Patil, and H. Channell (1985) inProc. Int. Symp. Oilfield Geotherm. Chem., Soc. Petrol. Eng. Paper 13559, Phoenix, AZ, Apr. 9–11.

  2. J. J. Meister, D. R. Patil, L. R. Field, and J. C. Nicholson (1984)Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 25(I), 266–267.

    Google Scholar 

  3. J. J. Meister, D. R. Patil, L. R. Field, and J. C. Nicholson (1984)J. Polym. Sci. Polym. Chem. Ed. 22, 1963–1980.

    Google Scholar 

  4. J. J. Meister, D. R. Patil, and H. Channell (1984)J. Appl. Polym. Sci. 29, 3457–3477.

    Google Scholar 

  5. J. J. Meister and D. R. Patil (1985)Macromolecules 18, 1559–1564.

    Google Scholar 

  6. J. J. Meister, D. R. Patil, and H. Channell (1985)Ind. Eng. Chem. Prod. Res. Dev. 24(2), 306–313.

    Google Scholar 

  7. J. J. Meister, D. R. Patil, and H. Channell (1985)Polym. Mater. Sci. Eng. Am. Chem. Soc. Div. Polym. Mater. 52, 235–239.

    Google Scholar 

  8. J. J. Meister (1986) in C. E. Carraher and L. H. Sperling (Eds.),Renewable-Resource Materials: New Polymer Sources, Plenum, New York, pp. 305–322.

    Google Scholar 

  9. J. J. Meister and E. G. Richards (1989) in S. Sarkanen and W. Glasser (Eds.),Lignin, Properties and Uses, Symposium Series 397, American Chemical Society, Washington, DC, pp. 58–81.

    Google Scholar 

  10. J. J. Meister, D. R. Patil, C. Augustin, and J. Z. Lai (1989) in S. Sarkanen and W. Glasser (Eds.),Lignin, Properties and Uses, Symposium Series 397, American Chemical Society, Washington, DC, pp. 294–311.

    Google Scholar 

  11. J. J. Meister and M.-J. Chen (1991)Macromolecules 24(26), 6843–6848.

    Google Scholar 

  12. Kirk-Othmer Encyclopedia of Chemical Technology (1982), Wiley New York, Interscience, Vol.19, pp. 392–396.

    Google Scholar 

  13. D. Maldas and B. V. Kokta (1991)J. Reinforced Plastics Compos. 10, 42–57.

    Google Scholar 

  14. B. V. Kokda, F. Dembele, and C. Daneault (1985)Polym. Inter. Sci. Eng. 52, 99–103.

    Google Scholar 

  15. R. G. Raj, B. V. Kokta, and C. Daneault (1989)Makromol. Chem. Macromol. Symp. 28, 187–202.

    Google Scholar 

  16. E. A. A. Van Hartingsveldt (1986) in B. Sedlacek (Ed.),Proceedings of the 28th Microsymposium on Macromolecules, Prague, Czechoslovakia, July 8–11, 1985, Walter de Gruyter, Berlin, pp. 569–574.

    Google Scholar 

  17. R. T. Woodhams, G. Thomas, and D. K. Rodgers (1984)Polym. Eng. Sci. 24(15), 1166–1171.

    Google Scholar 

  18. H. Dalvag, C. Klason, and H.-E. Stromvall (1985)Int. J. Polym. Mater. 11(1), 9–38.

    Google Scholar 

  19. S. E. Selke, K. Nieman, J. Childress, M. Keal, and R. Bimpson (1990) inAdvanced Technology Applications to Eastern Hardwood Utilization. Michigan State University, Lansing, May 30–31.

    Google Scholar 

  20. J. J. Meister (1990) U.S. 4,940,764.

  21. J. J. Meister (1990) U.S. 4,931,527.

  22. J. J. Meister and C. T. Li (1989) in J. K. Borchardt and T. F. Yen (Eds.),Oilfield Chemistry, Enhanced Recovery and Production Stimulation, Symposium Series 396, American Chemical Society, Washington, DC, pp. 169–203.

    Google Scholar 

  23. J. J. Meister and C. T. Li (1989) U.S. 4,889,902.

  24. J. J. Meister, A. Lathia, and F-F. Chang,J. Polym. Sci. Polym. Chem. (in press).

  25. J. J. Meister, D. R. Patil, L. R. Field, and J. C. Nicholson (1986)Macromolecules 19, 803–809.

    Google Scholar 

  26. J. C. Nicholson, J. J Meister, D. R. Patil, and L. R. Field (1984)Anal. Chem. 56, 2447–2451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meister, J.J., Chen, MJ. Synthesis and identification of graft copolymers of wood pulp and styrene. J Environ Polym Degr 3, 259–272 (1995). https://doi.org/10.1007/BF02068680

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02068680

Key words

Navigation