Skip to main content
Log in

Large-scale production of poly(3-hydroxyvaleric acid) by fermentation ofChromobacterium violaceum, processing, and characterization of the homopolyester

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

A fed-batch process was developed, which allowed biotechnological production of the homopolyester poly(3-hydroxyvaleric acid) [poly(3HV)], in a mineral salts medium containing valeric acid as carbon source and complex nutrients as supplements byChromobacterium violaceum at a 10- and 300-L fermentation scale. This process yielded up to 40 g dry cell matter per L fermentation broth, and the cells contained up to 70% (w/w) poly(3HV). Poly(3HV), which was extracted from the cells with chloroform and was precipitated from this solvent with ethanol, was processed to test bars by injection molding or by press processing and to fibers by melt spinning. The unprocessed and processed poly(3HV) material was characterized with respect to the molecular weight and with respect to thermal, rheological, and mechanical properties. It was shown that it is possible to process biodegradable poly(3HV) thermoplastically and to obtain a polymer suitable for applications with low strength requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akita, Y. Einaga, Y. Miyaki, and H. Fujita (1976)Macromolecules 9, 774–780.

    Google Scholar 

  2. A. J. Anderson and E. A. Dawes (1990)Microbiol. Rev. 54, 450–472.

    PubMed  Google Scholar 

  3. A. J. Anderson, G. W. Haywood, and E. A. Dawes (1990)Int. J. Biol. Macromol. 12, 102–105.

    PubMed  Google Scholar 

  4. P. J. Barham, A. Keller, and E. L. Otun (1984)J. Mater. Sci. 19, 2781–2794.

    Google Scholar 

  5. P. J. Barham and H. H. Wills (1984)J. Mater. Sci. 19, 3826–3834.

    Google Scholar 

  6. P. J. Barham and A. Keller (1986)J. Polym. Sci. Polym. Phys. 24, 69–77.

    Google Scholar 

  7. P. J. Barham and H. H. Wills (1993)Mater. Sci. Technol. 12, 153–212.

    Google Scholar 

  8. S. Bloembergen, D. A. Holden, T. L. Bluhm, and G. K. Hamer (1989)Macromolecules 22, 1663–1669.

    Google Scholar 

  9. H. Brandl, R. A. Gross, R. W. Lenz, and R. C. Fuller (1988)Appl. Environ. Microbiol. 54, 1977–1982.

    Google Scholar 

  10. H. Brandl, E. J. Knee, R. C. Fuller, R. A. Gross, and R. W. Lenz (1989)Int. J. Biol. Macromol. 11, 49–55.

    PubMed  Google Scholar 

  11. D. Byrom (1990) in E. A. Dawes (Ed.),Novel Biodegradable Microbial Polymers, Kluwer, Dordrecht, pp. 113–117.

    Google Scholar 

  12. M. M. Brysk, W. A. Corpe, and L. V. Hankes (1969)J. Bacteriol. 97, 322–327.

    PubMed  Google Scholar 

  13. J. M. Dealy and K. F. Wissbrun (1989)Meltrheology and Its Role in Plastics Processing, Van Nostrand Reinhold, New York.

    Google Scholar 

  14. Y. Doi, A. Tamaki, M. Kunioka, and K. Soga (1988)Appl. Microbiol. Biotechnol. 28, 330–334.

    Google Scholar 

  15. M. Gillis and J. De Ley (1991) in A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.),The Prokaryotes, Springer Verlag, Heidelberg, 2nd ed., pp. 2591–2600.

    Google Scholar 

  16. J. Hocking, and R. M. Marchessault (1994) in G. F. L. Griffin (Ed.),Chemistry and Technology of Biodegradable Polymers, Chapman and Hall, London, pp. 48–96.

    Google Scholar 

  17. D. Jendrossek, I. Knoke, R. B. Habibian, A. Steinbüchel, and H. G. Schlegel (1993)J. Environ. Polym. Degrad. 1, 53–63.

    Google Scholar 

  18. M. Liebergesell, E. Hustede, A. Timm, A. Steinbüchel, R. C. Fuller, R. W. Lenz, and H. G. Schlegel (1991)Arch. Microbiol. 155, 415–421.

    Google Scholar 

  19. B. Müller and D. Jendrossek (1993)Appl. Microbiol. Biotechnol. 28, 487–492.

    Google Scholar 

  20. A. J. Owen (1985)Colloid Polym. Sci. 263, 799–803.

    Google Scholar 

  21. H. G. Schlegel, H. Kaltwasser, and G. Gottschalk (1961)Arch. Mikrobiol. 28, 209–222.

    Google Scholar 

  22. A. D. Smith and R. J. Hunt (1985)J. Chem. Technol. Biotechnol. 35, 110–116.

    Google Scholar 

  23. A. R. Spurr (1969)J. Ultrastruct. Res. 26, 31–43.

    PubMed  Google Scholar 

  24. A. Steinbüchel (1991)Nachr. Chem. Tech. Lab. 39, 1112–1124.

    Google Scholar 

  25. A. Steinbüchel (1991) in D. Byrom (Ed.),Biomaterials, Macmillan Press, London, pp. 123–213.

    Google Scholar 

  26. A. Steinbüchel, E. Hustede, M. Liebergesell, A. Timm, U. Pieper, and H. E. Valentin (1992)FEMS Microbiol. Rev. 103, 217–230.

    Google Scholar 

  27. A. Steinbüchel, El-Mehdi Debzi, R. H. Marchessault, and A. Timm (1993)Appl. Microbiol. Biotechnol. 29, 443–449.

    Google Scholar 

  28. A. Timm, D. Byrom, and A. Steinbüchel (1990)Appl. Microbiol. Biotechnol. 33, 296–301.

    Google Scholar 

  29. S. Ueda, S. Matsumoto, A. Takagi, and T. Yamane (1992)Appl. Environ. Microbiol. 58, 3574–3579.

    Google Scholar 

  30. S. Ueda, S. Matsumoto, A. Takagi, and T. Yamane (1992)FEMS Microbiol. Lett. 98, 57–60.

    Google Scholar 

  31. A. Walther-Mauruschat, M. Aragno, F. Mayer, and H. G. Schlegel (1977)Arch. Microbiol. 114, 101–110.

    PubMed  Google Scholar 

  32. M. Yokouchi, Y. Chatani, H. Tadokoro, and H. Tani (1974)Polym. J. 6, 248–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbüchel, A., Schmack, G. Large-scale production of poly(3-hydroxyvaleric acid) by fermentation ofChromobacterium violaceum, processing, and characterization of the homopolyester. J Environ Polym Degr 3, 243–258 (1995). https://doi.org/10.1007/BF02068679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02068679

Key words

Navigation