Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 178, Issue 1, pp 143–151 | Cite as

Thorium equilibria with the sodium form of clinoptilolite and mordenite

  • C. Constantopoulous
  • M. Loizidou
  • Z. Loizou
  • N. Spyrellis
Article

Abstract

A study has been performed in order to examine the iron exchange behavior of tetravalent thorium ions using natural sodium clinoptilolite and mordenite. The free energy values, ΔG0, were calculated and found to be 3.33 kJ/g eq for the Th/Na-CLI system, and for Th/Na-MOR 3.94 kJ/g eq. Despite the fact that the overall preference of the zeolites is for the sodium ions, thorium uptake was quite significant for mordenite, covering 30% of its theoretical exchange capacity at the equilibrium point, while for clinoptilolite only 10% was occupied.

Keywords

Sodium Iron Physical Chemistry Free Energy Inorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. AMES, Amer. Mineral., 42 (1961).Google Scholar
  2. 2.
    G. V. TSITSIHVILI, 2nd Int. Conf. on the Occurrence, Properties and Utilization of Natural Zeolites, by D. KALLÓ, H. S. SHERRY (Eds), Akadémiai Kiadó, Budapest, 1988, p. 367.Google Scholar
  3. 3.
    I. M. GALABOVA, G. A. HARALAMPIEV, 2nd Int. Conf. on the Occurrence, Properties and Utilization of Natural Zeolites, by D. KALLÓ, H. S. SHERRY (Eds), Akadémiai Kiadó, Budapest, 1988, p. 577.Google Scholar
  4. 4.
    H. MINATO, 2nd Int. Conf. on the Occurrence, Properties and Utilization of Natural Zeolites, by D. KALLÓ, H. S. SHERRY (Eds), Akadémiai Kiadó, Budapest, 1988. p. 395.Google Scholar
  5. 5.
    W. G. POND, F. A. MUMPTON, Zeo-Agriculture, Westview Press, 1984, p. 395.Google Scholar
  6. 6.
    F. A. MUMPTON, P. H. FISHMAN, J. Anim. Sci., 45 (1977).Google Scholar
  7. 7.
    V. A. TURINA, V. A. NIKASHINA, Proc. Vysoke Tatry, Czechoslovakia, Slovzeo '84, 68, 1984, p. 50.Google Scholar
  8. 8.
    M. LOIZIDOU, R. P. TOWNSEND, Zeolites, 3 (1987) 112.Google Scholar
  9. 9.
    M. LOIZIDOU, R. P. TOWNSEND, J. Chem. Soc. Dalton Trans. (1987) 1911.Google Scholar
  10. 10.
    M. LOIZIDOU, Proc. 2nd Int. Symp. on Metals Speciation, Separation and Recovery, Rome, 1989.Google Scholar
  11. 11.
    M. J. SEMMENS, M. SEYFARTH, Pergamon Press, 1978, p. 517.Google Scholar
  12. 12.
    M. LOIZIDOU, Heavy Metals in the Environment, Proc. 7th Int. Conf., Geneva, September 1989.Google Scholar
  13. 13.
    B. W. MERCER, L. L. AMES, P. W. SMITH, Nuclear Appl. Techn., 8 (1970) 62.Google Scholar
  14. 14.
    D. W. BRECK, Potential Uses of Natural and Synthetic Zeolites in Industry, Conf. at the City Univ., London, 1979.Google Scholar
  15. 15.
    N. A. ECHAEV, V. ONUFRIEV, K. T. THOMAS, IAEA Bull., Spring, 1986, p. 15.Google Scholar
  16. 16.
    A. DYER, Zeolite Molecular Sieves, London, 1988.Google Scholar
  17. 17.
    S. PETERSON, R. WYMER, Chemistry in Nuclear Technology, Addison-Wesley, 1963, p. 117.Google Scholar
  18. 18.
    Z. DLOUHY, Studies in Environmental Science, Disposal of Radioactive Wastes, Elsevier, Amsterdam, 1982, p. 15.Google Scholar
  19. 19.
    R. A. ROBINSON, R. H. STOKES, Electrolyte Solutions, 2nd ed. London, 1959.Google Scholar
  20. 20.
    H. S. HARNED, B. B. OWEN, The Physical Chemistry of Electrolytic Solution, 3rd ed. Rheinhold Publ. Corp., New York, 1958.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • C. Constantopoulous
    • 1
  • M. Loizidou
    • 1
  • Z. Loizou
    • 1
  • N. Spyrellis
    • 1
  1. 1.Chemical Engineering DepartmentAthens National Technical UniversityAthens(Greece)

Personalised recommendations