Advertisement

Hyperfine Interactions

, Volume 87, Issue 1, pp 1111–1116 | Cite as

Development of a μLCR facility at LAMPF

  • M. A. Paciotti
  • D. W. Cooke
  • M. Leon
  • B. L. Bennett
  • C. Pillai
  • O. M. Rivera
  • B. Hitti
  • T. L. Estle
  • S. F. J. Cox
  • R. L. Lichti
  • T. R. Adams
  • C. D. Lamp
  • A. Morrobel-Sosa
  • O. Richter
  • C. Boekema
  • J. Lam
  • S. Alves
  • J. Oostens
  • E. A. Davis
Session 10. Facilities and Techniques

Abstract

It has long been recognized thatμLCR could profitably be done with the high intensity surface beam at LAMPF [1]. A spectrometer has been built that is matched to the LAMPF beam characteristics. The polarization information is obtained from a downstream array of counters while side counters, containing no polarization signal, monitor theμ+ beam. Degraders select higher energy e+, thereby reducing rates and required counter segmentation while maintaining information content. We apply a ramped longitudinal field in addition to the static one to average over instabilities in theμ+ beam. This field scan allows direct interpretation of data and does not require a prior estimate of the resonance structure of a sample. Flux coils monitor the applied ramp field and eddy-current induced fields. High average rate (2×107μ+/s). good stability, and the versatile field scan permitted useful data to be collected from Cu, Al(Cu), Al, Si(Al), and polycrystalline Si targets.

Keywords

Information Content Good Stability Resonance Structure Polarization Signal Induce Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.H. Brewer, Hyp. Int.32 (1986) 720.Google Scholar
  2. [2]
    G.H. Eaton, A. Carne, S.F.J. Cox, J.D. Davies, R. De Renzi, O. Hartmann, A. Kratzer, C. Ristori, C. A. Scott, G.C. Stirling, and T. Sundqvist, Nucl. Instr. Meth.A269 (1988) 483–491.Google Scholar
  3. [3]
    M.A. Paciotti, J.N. Bradbury, R.H. Heffner, M. Leon, D. Rink, O.M. Rivera, IEEE Trans. on Nucl. Sci.NS-32 (1985) 3338–3340.Google Scholar
  4. [4]
    S.R. Kreitzman, J.H. Brewer, D.R. Harshman, R. Keitel, D.Ll. Williams, K.M. Crowe, and E.J. Ansaldo, Phys. Rev. Lett.56 (1986) 181.Google Scholar
  5. [5]
    S.F.J. Cox et al., “Muon Level Crossing Resonance in Aluminum,” presented atμSR-93-Maui, Maui, Hawaii, June 7–11, 1993.Google Scholar
  6. [6]
    D.W. Cooke et al., “Muon Level-Crossing Resonance in Si:Ai,” presented atμSR-93-Maui, Maui. Hawaii, June 7–11, 1993.Google Scholar
  7. [7]
    D.W. Cooke et al., “Distinctive Field Dependence of the Longitudinal Muon Polarization for Mu in Polycrystalline Silicon,” presented atμSR-93-Maui. Maui, Hawaii, June 7–11, 1993.Google Scholar

Copyright information

© J.C. Baltzer AG, Science PublishersJ.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • M. A. Paciotti
    • 1
  • D. W. Cooke
    • 1
  • M. Leon
    • 1
  • B. L. Bennett
    • 1
  • C. Pillai
    • 1
  • O. M. Rivera
    • 1
  • B. Hitti
    • 2
  • T. L. Estle
    • 2
  • S. F. J. Cox
    • 3
  • R. L. Lichti
    • 4
  • T. R. Adams
    • 4
  • C. D. Lamp
    • 4
  • A. Morrobel-Sosa
    • 5
  • O. Richter
    • 5
  • C. Boekema
    • 6
  • J. Lam
    • 6
  • S. Alves
    • 6
  • J. Oostens
    • 7
  • E. A. Davis
    • 8
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Rice UniversityHoustonUSA
  3. 3.Rutherford Appleton LaboratoryISISOxfordshireUK
  4. 4.Texas Tech UniversityLubbockUSA
  5. 5.California Polytechnic State UniversitySan Luis ObispoUSA
  6. 6.San Jose State. UniversitySan JoseUSA
  7. 7.Lindsey Wilson CollegeColumbiaUSA
  8. 8.Leicester UniversityUK

Personalised recommendations