Skip to main content
Log in

Quantum phenomena and the zeropoint radiation field

Foundations of Physics Aims and scope Submit manuscript

Abstract

The stationary solutions for a bound electron immersed in the random zeropoint radiation field of stochastic electrodynamics are studied, under the assumption that the characteristic Fourier frequencies of these solutions are not random. Under this assumption, the response of the particle to the field is linear and does not mix frequencies, irrespectively of the form of the binding force; the fluctuations of the random field fix the scale of the response. The effective radiation field that supports the stationary states of motion is no longer the free vacuum field, but a modified form of it with new statistical properties. The theory is expressed naturally in terms of matrices (or operators), and it leads to the Heisenberg equations and the Hilbert space formalism of quantum mechanics in the radiationless approximation. The connection with the poissonian formulation of stochastic electrodynamics is also established. At the end we briefly discuss a few important aspects of quantum mechanics which the present theory helps to clarify.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. See, e.g., H. P. Yuen,in Photons and Quantum Fluctuations, E. R. Pike and H. W. Walther, eds. (Adam Hilger, Bristol, 1988).

    Google Scholar 

  2. It is in connection with the Casimir forces that the reality of the zeropoint radiation field is more clearly and frequently adduced; see, e.g., T. H. Boyer,Ann. Phys. (N. Y.) 56, 474 (1970), and Ref. 3.

    Google Scholar 

  3. L. Spruch and E. J. Kelsey,Phys. Rev. A 18, 845 (1978); P. W. Milonni, R. J. Cook and M. E. Goggin,Phys. Rev. A 38, 1621 (1988).

    Google Scholar 

  4. M. Planck,Verh. Deutsch. Phys. Ges. 13, 138 (1911),Ann. Phys. (Leipzig) 37, 642 (1912);

    Google Scholar 

  5. W. Nernst,Verh. Deutsch. Phys. Ges. 18, 83 (1916).

    Google Scholar 

  6. N. S. Kalitsin,JETP (USSR) 25, 407 (1953); E. I. Adirovich and M. I. Podgoretskii,JETP (USSR) 26, 150 (1954); P. Braffort, M. Spighel, and C. Tzara,C.R. Acad. Sci. (Paris) 239, 157. (1954) [erratum,ibid., 925 (1954)]; P. Braffort and C. Tzara,ibid.,239, 1775 (1954); T. W. Marshall,Proc. R. Soc. (London) A 276, 475 (1963).

    Google Scholar 

  7. M. Surdin,Ann. Inst. Henri Poincaré A 15, 203 (1971).

    Google Scholar 

  8. T. H. Boyer, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).

    Google Scholar 

  9. P. Claverie, inProceedings of the Einstein Centennial Symposium on Fundamental Physics, Bogotá, 1979, S. M. Mooreet al., eds. (Universidad de los Andes, Bogotá, 1981).

    Google Scholar 

  10. L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gómezet al., eds. (World Scientific, Singapore, 1983).

    Google Scholar 

  11. A. Rueda,Space Sci. Rev. 53, 223 (1990).

    Google Scholar 

  12. T. H. Boyer,Phys. Rev. D 27, 2906 (1983),29, 1096 (1984);Nuovo Cimento B 100, 685 (1987);Found. Phys. 19, 1371 (1989).

    Google Scholar 

  13. A. Rueda and G. Cavalleri,Nuovo Cimento C 6, 239 (1983); A. Rueda,Nuovo Cimento B 96, 64 (1986).

    Google Scholar 

  14. R. Payen,J. Phys. 45, 805 (1984).

    Google Scholar 

  15. T. W. Marshall and E. Santos,Ann. N.Y. Acad. Sci. 480, 400 (1986);Europhys. Lett. 3, 293 (1987);Found. Phys. 18, 185 (1988),Phys. Rev. A 39, 6271 (1989); inProblems in Quantum Physics, Gdansk'87, L. Kostro, A. Posiewik, J. Pykacz, and M. Zubowski, eds. (World Scientific, Singapore, 1988).

    Google Scholar 

  16. D. C. Cole,Phys. Rev. D 33, 2903 (1986);Phys. Rev. A 42, 1847 (1990);Found. Phys. 20, 225 (1990).

    Google Scholar 

  17. H. M. FranÇa and T. W. Marshall,Phys. Rev. A 38, 3258 (1988).

    Google Scholar 

  18. A. V. Barranco, S. A. Brunini, and H. M. FranÇa,Phys. Rev. A 39, 5492 (1989).

    Google Scholar 

  19. H. E. Puthoff,Phys. Rev. D 35, 3266 (1987);Phys. Rev. A 39, 2333 (1989),40, 4857 (1989). See comments by P. S. Wesson and E. Santos and replay by H. E. Puthoff inPhys. Rev. A 44, 3379, 3382, 3383, 3385 (1991).

    Google Scholar 

  20. A. M. Cetto and L. de la Peña,Phys. Rev. A 37, 1952, 1960 (1988). See also H. M. FranÇa, T. W. Marshall, and E. Santos,Phys. Rev. A 45, 6436 (1992).

    Google Scholar 

  21. A. M. Cetto and L. de la Peña,Found. Phys. 19, 419 (1989).

    Google Scholar 

  22. D. C. Cole, inFormal Aspects in Electromagnetic Theory, A. Lakhtakia, ed. (World Scientific, Singapore, 1992); “Reinvestigation of the Thermodynamics of Blackbody Radiation via Classical Physics, preprint, 1991.

    Google Scholar 

  23. R. Blanco, H. M. FranÇa, and E. Santos,Phys. Rev. A 43, 693 (1991).

    Google Scholar 

  24. See, e.g., C. P. Enz inPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974).

    Google Scholar 

  25. A review of the attempts to remove the gravitational difficulties associated to the zeropoint radiation field can be found in S. Weinberg,Rev. Mod. Phys. 61, 1 (1989).

    Google Scholar 

  26. T. H. Boyer,Phys. Rev. D 13, 2832 (1976);Phys. Rev. A 18, 1228 (1978); T. W. Marshall and P. Claverie,J. Math. Phys. 21, 1819 (1980); P. Claverie, L. Pesquera, and F. Soto,Phys. Lett. A 80, 113 (1980); P. Claverie and F. Soto,J. Math. Phys. 23, 753 (1982); L. Pesquera, thesis, Université de Paris VI, 1980 (unpublished).

    Google Scholar 

  27. L. de la Peña and A. M. Cetto,Nuovo Cimento B 92, 189 (1986). See alsoRev. Mex. Fís.37, 17 (1991).

    Google Scholar 

  28. L. de la Peña and A. M. Cetto, “Reformulation of stochastic electrodynamics for an explanation of quantum phenomena,” preprint, IFUNAM, 1989.

  29. A. M. Cetto and L. de la Peña,Found. Phys. Lett. 4, 73 (1991).

    Google Scholar 

  30. L. de la Peña and A. M. Cetto, inNonlinear Fields: Classical, Random, Semisclassical, P. Garbaczewski and Z. Popowicz, eds. (World Scientific, Singapore, 1991), p. 416 and 436.

    Google Scholar 

  31. L. de la Peña and A. M. Cetto, “Quantum phenomena and the zeropoint radiation field. II,” preprint, February 1993.

  32. See the paper by Planck in Ref. 4; also: M. von Laue,Ann. Phys. (Leipzig) 47, 853 (1915);

    Google Scholar 

  33. M. Planck,The Theory of Heat Radiation (Dover, New York, 1959).

    Google Scholar 

  34. G. H. Goedecke,Found. Phys. 13, 1101 (1983).

    Google Scholar 

  35. See, e.g., A. Papoulis,Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965).

    Google Scholar 

  36. M. Born, W. Heisenberg, and P. Jordan,Z. Phys. 35, 557 (1926); reprinted inSources of Quantum Mechanics, B. van der Waerden, ed. (Dover, New York, 1968).

    Google Scholar 

  37. See, e.g., L. de la Peña,Phys. Lett. A 81, 441 (1981); “Stochastic Electrodynamics for Particles with Structure,” preprint, IFUNAM 81-18, 1981; A. Rueda, inProceedings 2nd Workshop on Fundamental Physics, University of Puerto Rico, Humacao, P.R., 1986;Found. Phys. Lett. 6, 75 (1993); T. W. Marshall and E. Santos, the last paper in Ref. 14; A. M. Cetto and L. de la Peña, inProceedings of the Oviedo Symposium on Fundamental Problems in Quantum Physics, 1993, to be published.

    Google Scholar 

  38. The idea of the universality of the background noise has been propounded on several occasions; see, e.g., E. Santos, inGIFT Seminar on Quantum Field Theory, Jaca (Spain) 1975, and references therein. The concept of quantum mechanics as a limit theory of SED (for e→0) is used, e.g., by E. Santos inNuovo Cimento B 19, 57 (1974) and T. H. Boyer inPhys. Rev. D 11, 809 (1975).

  39. See, e.g., N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam) and H. Risken,The Fokker-Planck Equation (Springer, New York).

  40. P. K. Feyerabend,Z. Phys. 145, 421 (1956).

    Google Scholar 

  41. T. A. Brody,Rev. Mex. Fis. 35, S80 (1989).

    Google Scholar 

  42. See, e.g., L. Pesquera and P. Claverie,J. Math. Phys. 23, 1315 (1982).

    Google Scholar 

  43. This was apparently first proposed by E. Fermi inRend. Lincei 5, 595 (1927). In more recent times it has been retaken by other authors; see, e.g., D. H. Sharp, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).

    Google Scholar 

  44. P. W. Milonni,Phys. Rep. 25, 1 (1976) and references therein. See also P. W. Milonni, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980) andPhys. Scr. T 21, 102 (1988).

    Google Scholar 

  45. An early derivation of theA coefficient for the SED harmonic oscillator can be found in T. W. Marshall,Izv. Vuzov (Fiz.) 11, 34 (1968); more recent results can be seen in L. de la Peña and A. M. Cetto,J. Math. Phys. 20, 469 (1979); H. M. FranÇa and T. W. Marshall,Phys. Rev. A 38, 3258 (1988).

    Google Scholar 

  46. A. A. Sokolov and V. S. Tumanov,Zh. Eksp. Teor. Fiz. 30, 802 (1956) [Soviet Phys. JETP 3, 958 (1957)]; R. Schiller and H. Tesser,Phys. Rev. A 3, 2035 (1971); P. W. Milonni,Phys. Lett. A 82, 225 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence at Mathematics Department, University College London. Gower Street, London WC1, U.K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Peña, L., Cetto, A.M. Quantum phenomena and the zeropoint radiation field. Found Phys 24, 917–948 (1994). https://doi.org/10.1007/BF02067655

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067655

Keywords

Navigation