Abstract
The stationary solutions for a bound electron immersed in the random zeropoint radiation field of stochastic electrodynamics are studied, under the assumption that the characteristic Fourier frequencies of these solutions are not random. Under this assumption, the response of the particle to the field is linear and does not mix frequencies, irrespectively of the form of the binding force; the fluctuations of the random field fix the scale of the response. The effective radiation field that supports the stationary states of motion is no longer the free vacuum field, but a modified form of it with new statistical properties. The theory is expressed naturally in terms of matrices (or operators), and it leads to the Heisenberg equations and the Hilbert space formalism of quantum mechanics in the radiationless approximation. The connection with the poissonian formulation of stochastic electrodynamics is also established. At the end we briefly discuss a few important aspects of quantum mechanics which the present theory helps to clarify.
References
See, e.g., H. P. Yuen,in Photons and Quantum Fluctuations, E. R. Pike and H. W. Walther, eds. (Adam Hilger, Bristol, 1988).
It is in connection with the Casimir forces that the reality of the zeropoint radiation field is more clearly and frequently adduced; see, e.g., T. H. Boyer,Ann. Phys. (N. Y.) 56, 474 (1970), and Ref. 3.
L. Spruch and E. J. Kelsey,Phys. Rev. A 18, 845 (1978); P. W. Milonni, R. J. Cook and M. E. Goggin,Phys. Rev. A 38, 1621 (1988).
M. Planck,Verh. Deutsch. Phys. Ges. 13, 138 (1911),Ann. Phys. (Leipzig) 37, 642 (1912);
W. Nernst,Verh. Deutsch. Phys. Ges. 18, 83 (1916).
N. S. Kalitsin,JETP (USSR) 25, 407 (1953); E. I. Adirovich and M. I. Podgoretskii,JETP (USSR) 26, 150 (1954); P. Braffort, M. Spighel, and C. Tzara,C.R. Acad. Sci. (Paris) 239, 157. (1954) [erratum,ibid., 925 (1954)]; P. Braffort and C. Tzara,ibid.,239, 1775 (1954); T. W. Marshall,Proc. R. Soc. (London) A 276, 475 (1963).
M. Surdin,Ann. Inst. Henri Poincaré A 15, 203 (1971).
T. H. Boyer, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).
P. Claverie, inProceedings of the Einstein Centennial Symposium on Fundamental Physics, Bogotá, 1979, S. M. Mooreet al., eds. (Universidad de los Andes, Bogotá, 1981).
L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gómezet al., eds. (World Scientific, Singapore, 1983).
A. Rueda,Space Sci. Rev. 53, 223 (1990).
T. H. Boyer,Phys. Rev. D 27, 2906 (1983),29, 1096 (1984);Nuovo Cimento B 100, 685 (1987);Found. Phys. 19, 1371 (1989).
A. Rueda and G. Cavalleri,Nuovo Cimento C 6, 239 (1983); A. Rueda,Nuovo Cimento B 96, 64 (1986).
R. Payen,J. Phys. 45, 805 (1984).
T. W. Marshall and E. Santos,Ann. N.Y. Acad. Sci. 480, 400 (1986);Europhys. Lett. 3, 293 (1987);Found. Phys. 18, 185 (1988),Phys. Rev. A 39, 6271 (1989); inProblems in Quantum Physics, Gdansk'87, L. Kostro, A. Posiewik, J. Pykacz, and M. Zubowski, eds. (World Scientific, Singapore, 1988).
D. C. Cole,Phys. Rev. D 33, 2903 (1986);Phys. Rev. A 42, 1847 (1990);Found. Phys. 20, 225 (1990).
H. M. FranÇa and T. W. Marshall,Phys. Rev. A 38, 3258 (1988).
A. V. Barranco, S. A. Brunini, and H. M. FranÇa,Phys. Rev. A 39, 5492 (1989).
H. E. Puthoff,Phys. Rev. D 35, 3266 (1987);Phys. Rev. A 39, 2333 (1989),40, 4857 (1989). See comments by P. S. Wesson and E. Santos and replay by H. E. Puthoff inPhys. Rev. A 44, 3379, 3382, 3383, 3385 (1991).
A. M. Cetto and L. de la Peña,Phys. Rev. A 37, 1952, 1960 (1988). See also H. M. FranÇa, T. W. Marshall, and E. Santos,Phys. Rev. A 45, 6436 (1992).
A. M. Cetto and L. de la Peña,Found. Phys. 19, 419 (1989).
D. C. Cole, inFormal Aspects in Electromagnetic Theory, A. Lakhtakia, ed. (World Scientific, Singapore, 1992); “Reinvestigation of the Thermodynamics of Blackbody Radiation via Classical Physics, preprint, 1991.
R. Blanco, H. M. FranÇa, and E. Santos,Phys. Rev. A 43, 693 (1991).
See, e.g., C. P. Enz inPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974).
A review of the attempts to remove the gravitational difficulties associated to the zeropoint radiation field can be found in S. Weinberg,Rev. Mod. Phys. 61, 1 (1989).
T. H. Boyer,Phys. Rev. D 13, 2832 (1976);Phys. Rev. A 18, 1228 (1978); T. W. Marshall and P. Claverie,J. Math. Phys. 21, 1819 (1980); P. Claverie, L. Pesquera, and F. Soto,Phys. Lett. A 80, 113 (1980); P. Claverie and F. Soto,J. Math. Phys. 23, 753 (1982); L. Pesquera, thesis, Université de Paris VI, 1980 (unpublished).
L. de la Peña and A. M. Cetto,Nuovo Cimento B 92, 189 (1986). See alsoRev. Mex. Fís.37, 17 (1991).
L. de la Peña and A. M. Cetto, “Reformulation of stochastic electrodynamics for an explanation of quantum phenomena,” preprint, IFUNAM, 1989.
A. M. Cetto and L. de la Peña,Found. Phys. Lett. 4, 73 (1991).
L. de la Peña and A. M. Cetto, inNonlinear Fields: Classical, Random, Semisclassical, P. Garbaczewski and Z. Popowicz, eds. (World Scientific, Singapore, 1991), p. 416 and 436.
L. de la Peña and A. M. Cetto, “Quantum phenomena and the zeropoint radiation field. II,” preprint, February 1993.
See the paper by Planck in Ref. 4; also: M. von Laue,Ann. Phys. (Leipzig) 47, 853 (1915);
M. Planck,The Theory of Heat Radiation (Dover, New York, 1959).
G. H. Goedecke,Found. Phys. 13, 1101 (1983).
See, e.g., A. Papoulis,Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965).
M. Born, W. Heisenberg, and P. Jordan,Z. Phys. 35, 557 (1926); reprinted inSources of Quantum Mechanics, B. van der Waerden, ed. (Dover, New York, 1968).
See, e.g., L. de la Peña,Phys. Lett. A 81, 441 (1981); “Stochastic Electrodynamics for Particles with Structure,” preprint, IFUNAM 81-18, 1981; A. Rueda, inProceedings 2nd Workshop on Fundamental Physics, University of Puerto Rico, Humacao, P.R., 1986;Found. Phys. Lett. 6, 75 (1993); T. W. Marshall and E. Santos, the last paper in Ref. 14; A. M. Cetto and L. de la Peña, inProceedings of the Oviedo Symposium on Fundamental Problems in Quantum Physics, 1993, to be published.
The idea of the universality of the background noise has been propounded on several occasions; see, e.g., E. Santos, inGIFT Seminar on Quantum Field Theory, Jaca (Spain) 1975, and references therein. The concept of quantum mechanics as a limit theory of SED (for e→0) is used, e.g., by E. Santos inNuovo Cimento B 19, 57 (1974) and T. H. Boyer inPhys. Rev. D 11, 809 (1975).
See, e.g., N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam) and H. Risken,The Fokker-Planck Equation (Springer, New York).
P. K. Feyerabend,Z. Phys. 145, 421 (1956).
T. A. Brody,Rev. Mex. Fis. 35, S80 (1989).
See, e.g., L. Pesquera and P. Claverie,J. Math. Phys. 23, 1315 (1982).
This was apparently first proposed by E. Fermi inRend. Lincei 5, 595 (1927). In more recent times it has been retaken by other authors; see, e.g., D. H. Sharp, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).
P. W. Milonni,Phys. Rep. 25, 1 (1976) and references therein. See also P. W. Milonni, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980) andPhys. Scr. T 21, 102 (1988).
An early derivation of theA coefficient for the SED harmonic oscillator can be found in T. W. Marshall,Izv. Vuzov (Fiz.) 11, 34 (1968); more recent results can be seen in L. de la Peña and A. M. Cetto,J. Math. Phys. 20, 469 (1979); H. M. FranÇa and T. W. Marshall,Phys. Rev. A 38, 3258 (1988).
A. A. Sokolov and V. S. Tumanov,Zh. Eksp. Teor. Fiz. 30, 802 (1956) [Soviet Phys. JETP 3, 958 (1957)]; R. Schiller and H. Tesser,Phys. Rev. A 3, 2035 (1971); P. W. Milonni,Phys. Lett. A 82, 225 (1981).
Author information
Authors and Affiliations
Additional information
On leave of absence at Mathematics Department, University College London. Gower Street, London WC1, U.K.
Rights and permissions
About this article
Cite this article
de la Peña, L., Cetto, A.M. Quantum phenomena and the zeropoint radiation field. Found Phys 24, 917–948 (1994). https://doi.org/10.1007/BF02067655
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02067655