Foundations of Physics

, Volume 24, Issue 6, pp 831–853 | Cite as

Unitary models of single detector triggering and local position measurements

  • K. K. Wan
  • F. E. Harrison
Article

Abstract

Recent work by Wan and McLean has shown that all quantum measurements may be reduced to local position measurements. Using an array of particle detectors as the measuring apparatus we show how a model employing superselection rules and unitary evolution leads to a single detector triggering in each act of measurement. We also present an explicit model of particle detection as a unitary ionization process producing a single ion in the detector, subsequent amplification of which to the visible can be described adequately in classical terms.

Keywords

Recent Work Position Measurement Ionization Process Measuring Apparatus Quantum Measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955), pp. 351, 418, and 434.Google Scholar
  2. 2.
    B. van Fraassen,Quantum Mechanics—An Empiricist View (Clarendon, Oxford, 1991), pp. 128, 264–272).Google Scholar
  3. 3.
    K. K. Wan and R. D. McLean,Found. Phys. 24, 715 (1994).Google Scholar
  4. 4.
    K. K. Wan and R. D. McLean, inProceedings of the 2nd International Wigner Symposium, 1991, H. D. Doebner and F. E. Schroeck, Jr., eds. (World Scientific, Singapore), pp. 220–223.Google Scholar
  5. 5.
    K. K. Wan and R. D. McLean,J. Phys. A 24, L425 (1991).Google Scholar
  6. 6.
    K. K. Wan,Can. J. Phys. 58, 976 (1980).Google Scholar
  7. 7.
    E. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1981), pp. 45–51, 77–86.Google Scholar
  8. 8.
    J. Bub,Found. Phys. 18, 701 (1988).Google Scholar
  9. 9.
    J. Dixmier,Von Neumann Algebras (North-Holland, Amsterdam, 1981), pp. 129, 182.Google Scholar
  10. 10.
    J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968), pp. 169, 175, 179, 182.Google Scholar
  11. 11.
    R. V. Kadison and J. R. Ringrose,Fundamentals of the Theory of Operator Algebras, Vol. 1 (Academic Press, London, 1983), pp. 313–314.Google Scholar
  12. 12.
    R. I. G. Hughes,The Structure and Interpretation of Quantum Mechanics (Harvard University Press, Cambridge, Massachusetts, 1989), pp. 285–288.Google Scholar
  13. 13.
    K. K. Wan and F. E. Harrison,Phys. Lett. A 174, 1 (1993).Google Scholar
  14. 14.
    W. O. Amrein,Nonrelativistic Quantum Dynamics (Reidel, Dordrecht, 1981), pp. 110–120, 128–129.Google Scholar
  15. 15.
    A. Z. Capri,Nonrelativistic Quantum Dynamics (Benjamin/Cummings, Menlo Park, California, 1985), pp. 422–427, 433–435.Google Scholar
  16. 16.
    N. N. Das Gupta and S. K. Ghosh,Rev. Mod. Phys. 18, 225 (1946).Google Scholar
  17. 17.
    J. G. Wilson,The Principles of Cloud-Chamber Technique (Cambridge University Press, Cambridge, 1951).Google Scholar
  18. 18.
    L. C. L. Yuan and C.-S. Wu,Methods of Experimental Physics, Vol. 5A (Academic Press, New York and London, 1961), p. 196.Google Scholar
  19. 19.
    L. I. Schiff,Quantum Mechanics (McGraw-Hill, New York, 1955), pp. 292–293, 335.Google Scholar
  20. 20.
    T. Kobayashi and K. Ohmomo,Phys. Rev. A 41, 5798 (1990).Google Scholar
  21. 21.
    K. Hepp,Helv. Phys. Acta 45, 237 (1972).Google Scholar
  22. 22.
    S. Kudaka, S. Matsumoto, and K. Kakazu,Prog. Theor. Phys. 82, 665 (1989).Google Scholar
  23. 23.
    E. Merzbacher,Quantum Mechanics (Wiley, New York, 1961), p. 108.Google Scholar
  24. 24.
    K. Gottfried,Quantum Mechanics (Benjamin, New York, 1966), pp. 55–57.Google Scholar
  25. 25.
    P. Roman,Advanced Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1965), p. 13.Google Scholar
  26. 26.
    H. Margenau,Phil. Sci. 25, 23 (1958).Google Scholar
  27. 27.
    J. L. Park and W. Band,Found. Phys. 22, 657 (1992).Google Scholar
  28. 28.
    K. K. Wan and R. D. McLean,J. Phys. A 17, 837 (1984); Corrigenda17, 2363 (1984).Google Scholar
  29. 29.
    W. Thirring,Quantum Mechanics of Atoms and Molecules (Springer, New York, 1979), p. 123.Google Scholar
  30. 30.
    D. Aerts,Found. Phys. 12, 1131 (1982).Google Scholar
  31. 31.
    J. Weidmann,Linear Operators in Hilbert Spaces (Springer, New York, 1980), pp. 88, 282–285.Google Scholar
  32. 32.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 1 (Academic, New York, 1972), pp. 188, 287–292.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • K. K. Wan
    • 1
  • F. E. Harrison
    • 1
  1. 1.Department of Physics and AstronomyUniversity of St. AndrewsFifeScotland, UK

Personalised recommendations