Skip to main content
Log in

Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels

  • Published:
Russian Physics Journal Aims and scope

Abstract

We have carried out a systematic investigation of the mechanisms for solid-solution hardening by nitrogen atoms and dispersion hardening by nitride particles in single crystals of austenitic stainless steels with different stacking fault (SF) energies γSF=0.02–0.2 J/m2. We show that alloying with nitrogen CN=0–0.7 mass % and precipitation of dispersed particles leads to the appearance of an orientation dependence of the critical shearing stresses τcr, asymmetry phenomena, an orientation dependence of the slip and twinning deformation mechanisms, superelasticity, and transition from ductile fracture to brittle fracture. We develop dislocation models for solid-solution hardening by interstitial atoms, the orientation dependence and the asymmetry of τcr, based on taking into account the effect of the external stress field on the splitting of a/2〈110〉 dislocations into partial Schockley a/6〈211〉 dislocations and the change in the position of the interstitial atoms from octahedral interstitial sites to tetrahedral sites with a shift of the twinning a/6〈211〉 dislocations by a Burgers vector. We establish the role of strain localization, splitting of gliding dislocations, twinning, and a high stress level in creation of strain hardening, plastic flow instabilities, and the conditions for the "brittle-ductile" transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Byrnes, M. Gruyicic, and W. S. Owen, Acta Met.,35, No. 7, 1853–1862 (1987).

    Google Scholar 

  2. R. A. Varin and K. J. Kurzydlowski, Mater. Sci. Eng.,A101, 221–226 (1988).

    Google Scholar 

  3. R. P. Read, JOM,41, No. 3, 16–21 (1989).

    Google Scholar 

  4. S. P. Efimenko, Izv. Vyssh. Uchebn. Zaved., Ross. Akad. Nauk, Metally, No. 1, 119–127 (1992).

  5. J. D. Fast, Interaction of Metals and Gases [Russian translation], Metallurgiya, Moscow (1975).

    Google Scholar 

  6. G. Webb and A. Bussac, Met. Trans. A,24A, No. 2A, 397–401 (1993).

    Google Scholar 

  7. J. Xy and E. M. Schulson, Acta Met. Mater.,43, No. 5, 2121–2132 (1995).

    Google Scholar 

  8. A. Saussan and S. Degallaix, Mater. Sci. Eng.,142(A), 169–176 (1991).

    Google Scholar 

  9. N. D. Afanas'ev, V. G. Gavrilyuk, V. A. Duz', et al., Fiz. Met. Metalloved., No. 8, 121–127 (1990).

  10. M. A. Shtremel' and I. A. Kovalenko, Fiz. Met. Metalloved.,63, No. 1, 172–180 (1987).

    Google Scholar 

  11. P. H. Adler, G. B. Olson, and W. S. Owen, Metal. Trans.,17A, 1725–1737 (1986).

    Google Scholar 

  12. R. W. Cahn and P. Haasen (eds.), Physical Metallurgy [Russian translation], Vol. 3, Metallurgiya, Moscow (1987).

    Google Scholar 

  13. V. E. Panin, E. F. Dudarev, and L. S. Bushnev, Structure and Mechanical Properties of Substitutional Solid Solutions [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  14. I. M. Cahn, Acta Met.,25, 1021–1026 (1977).

    Google Scholar 

  15. W. S. Owen, High-Nitrogen Steels: Proceedings, Second All-Union Conference, Kiev, April 21–23, 1992; Kiev (1992), Pt. 2, pp. 9–13.

  16. Yu. I. Chumlyakov and A. D. Korotaev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 1–24 (1992).

  17. R. L. Tobler and D. Meyn, Met. Trans. (A),19, 1626–1631 (1988).

    Google Scholar 

  18. S. J. Hong and C. Laird, Acta Met. Mater.,38, No. 8, 1581–1594 (1990).

    Google Scholar 

  19. V. Gerold and H. P. Karnthaler, Acta Met.,37, No. 8, 2177–2183 (1989).

    Google Scholar 

  20. Yu. I. Chumlyakov, Doctoral Dissertation, Tomsk (1989).

  21. G. Gonzalez-Doncel, M. Torrable, and O. A. Ruano, J. Mater. Sci.,7, 2594–2601 (1989).

    Google Scholar 

  22. S. M. Copley and V. N. Kear, Acta Met.,16, No. 2, 227–231 (1968).

    Google Scholar 

  23. H. J. Kestenbach, Phil. Mag.,36, 1509–1515 (1977).

    Google Scholar 

  24. E. Nembach, Scripta Met.,18, 105–110 (1984).

    Google Scholar 

  25. Yu. I. Chumlyakov, I. V. Kireeva, and A. D. Korotaev, Fiz. Met. Metalloved., No. 4, 153–160 (1992).

  26. Yu. I. Chumlyakov, I. V. Kireeva, A. D. Korotaev, and L. S. Aparova, Fiz. Met. Metalloved.,75, No. 2, 150–157 (1993).

    Google Scholar 

  27. E. Nembach, K. Suzuki, M. Ichihara, et al., Mater. Sci. Eng.,A101, 109–116 (1988).

    Google Scholar 

  28. O. V. Ivanova, L. Ya. Pudan, and L. E. Popov, Red. Zh., Izv. Vyssh. Uchebn. Zaved., Fiz., Tomsk (1988); Dep. VINITI 04.11.88, No. 7883.

  29. E. Werner, Mater. Sci. Eng.,A101, 93–98 (1988).

    Google Scholar 

  30. R. Berner and H. Kronmuller, Plastic Deformation of Single Crystals [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  31. Yu. I. Chumlyakov, I. V. Kireeva, A. D. Korotaev, and L. S. Aparova, High-Nitrogen Steels: Proceedings, Second All-Union Conference, Kiev, April 21–23, 1992; Kiev (1992), Pt. 1, pp. 1–6.

  32. Ju. I. Chymljakov, I. V. Kireyeva, A. D. Korolaev, and L. S. Aparova, in: Proceedings, Third International Conference on High Nitrogen Steel, Kiev, Ukraine, September 14–16, 1993; Kiev (1993), Pt. 1, pp. 215–220.

  33. R. E. Schram and R. P. Reed, Metal Trans. A,6A, 1345–1351 (1975).

    Google Scholar 

  34. A. D. Korotaev, Yu. I. Chumlyakov, A. M. Li, et al., Dokl. Akad. Nauk SSSR,62, No. 2, 362–370 (1984).

    Google Scholar 

  35. Yu. I. Chumlyakov, A. M. Li, and A. D. Korotaev, Fiz. Met. Metalloved.,61, No. 1, 180–187 (1986).

    Google Scholar 

  36. Yu. I. Chumlyakov, I. V. Kireeva, S. P. Efimenko, et al., Dokl. Akad. Nauk, Rossk. Akad. Nauk,340, No. 4, 486–489 (1995).

    Google Scholar 

  37. Ju. I. Chumljakov, I. V. Kireyeva, O. V. Ivanova, and A. D. Korotaev, in: Shape Memory Materials 94. Proceedings, International Symposium on Shape Memory Materials, September 25–28, Beijing, China; Beijing (1994), pp. 511–514.

  38. Yu. I. Chumlyakov, V. N. Lineitsev, V. F. Esipenko, and A. D. Korotaev, Dokl. Akad. Nauk SSSR,253, No. 1, 156–161 (1980).

    Google Scholar 

  39. A. D. Korotaev et al., Fiz. Met. Metalloved.,55, No. 1, 149–156 (1983).

    Google Scholar 

  40. A. D. Korotayev et al., Phys. Stat. Sol. (a),82, No. 4, 405–412 (1984).

    Google Scholar 

  41. H. A. Venables, J. Phys. Chem. Solids,25, No. 7, 693–700 (1964).

    Google Scholar 

  42. T. F. Volynova, High-Manganese Steels and Alloys [in Russian], Metallurgiya, Moscow (1988).

    Google Scholar 

  43. A. Kelly and R. B. Nicholson, Precipitation Hardening [Russian translation], Metallurgiya, Moscow (1966).

    Google Scholar 

  44. M. F. Ashby, Phil. Mag.,21, 399–429 (1970).

    Google Scholar 

  45. M. F. Ashby, Acta Met.,14, 679–681 (1966).

    Google Scholar 

  46. S. A. Firstov and G. F. Sarzhan, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 23–34 (1991).

  47. E. F. Dudarev, L. A. Kornienko, and G. P. Bakach, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 35–46 (1991).

  48. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Principles of the Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  49. A. Kelly, Strong Solids [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  50. Yu. I. Chumlyakov, A. D. Korotaev, and V. F. Ul'yanycheva, Fiz. Met. Metalloved., No. 9, 155–160 (1992).

  51. Yu. I. Chumlyakov, V. F. Esipenko, A. M. Li, and A. D. Korotaev, Dokl. Akad. Nauk SSSR,268, No. 3, 617–621 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 5–32, March, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chumlyakov, Y.I., Kireeva, I.V., Korotaev, A.D. et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels. Russ Phys J 39, 189–210 (1996). https://doi.org/10.1007/BF02067642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067642

Keywords

Navigation