Theoretical and Mathematical Physics

, Volume 105, Issue 1, pp 1201–1209 | Cite as

Isotopic pairs and their representations

  • D. V. Juriev


The paper presents representations of isotopic pairs, the algebraic objects which can, probably, be convenient for describing some forms of the non-Hamiltonian interaction of Hamiltonian systems on the quantum level. General constructions are illustrated by simple examples.


Hamiltonian System Quantum Level General Construction Algebraic Object Isotopic Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Juriev,Topics in Non-Hamiltonian (Magnetic-Type) Interaction of Classical Hamiltonian Dynamic Systems. I; solv-int/9505001.Google Scholar
  2. 2.
    R. M. Santilli,Foundations of Theoretical Mechanics. II. Birkhoffian Generalization of Hamiltonian Mechanics, Springer-Verlag (1982).Google Scholar
  3. 3.
    D. Juriev,Topics in Hidden Symmetries; hep-th/9405050.Google Scholar
  4. 4.
    J. R. Faulkner,J. Alg.,26, 1–9 (1973); J. R. Faulkner and J. C. Ferrar,Commun. Alg.,8, 993–1013 (1980).Google Scholar
  5. 5.
    S. Okubo,Jordan triple systems and Yang-Baxter equation: Preprint Univ. Rochester UR-1334, ER-40685-783, 1993; hep-th/9312181.Google Scholar
  6. 6.
    O. Loos,Jordan Pairs, Springer-Verlag (1975); K. McCrimmon,Bull. Amer. Math. Soc.,84, 612–627 (1978).Google Scholar
  7. 7.
    L. C. Biedenharn and P. Truini,J. Math. Phys.,23, 1327–1345 (1982).Google Scholar
  8. 8.
    K. Meyberg,Math. Z.,115, 58 (1970); N. Jacobson,Structure and Representations of Jordan Algebras, Providence, Rhode Island (1971); M. Koecher, in:Lectures at the Rhine-Westfalia Academy of Sciences, No 307, WestDeutscher Verlag, Opladen (1982).Google Scholar
  9. 9.
    A. U. Klimyk and R. M. Santilli,Alg. Groups Geom.,10, 323–333 (1993).Google Scholar
  10. 10.
    D. B. Fuks,Cohomologies of Infinite Lie Algebras [in Russian], Nauka, Moscow (1984).Google Scholar
  11. 11.
    S. Okubo,J. Math. Phys.,34, 3292–3315 (1993).Google Scholar
  12. 12.
    J. Dixmier,Algèbres enveloppantes, Gauthier-Villars, Paris (1973).Google Scholar
  13. 13.
    A. A. Kirillov,Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).Google Scholar
  14. 14.
    E. P. Wigner,Phys. Rev.,77, 711–712 (1950).Google Scholar
  15. 15.
    T. D. Palev,J. Math. Phys.,23, 1778–1784 (1982).Google Scholar
  16. 16.
    H. S. Green,Phys. Rev.,90, 270–273 (1953); A. B. Govorkov,Zh. Eksp. Teor. Fiz.,54, 1785–1798 (1968); Y. Ohnuki and S. Kamefuchi,Quantum Field Theory and Parastatistics, Springer-Verlag (1982); S. Okubo,J. Math. Phys.,35, 2785–2803 (1994).Google Scholar
  17. 17.
    L. M. Yang,Phys. Rev.,84, 788–790 (1951).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • D. V. Juriev
    • 1
    • 2
    • 3
  1. 1.Department of Mathematics NIISI RASLaboratoire de Physique Théorique de l'École Normale SupérieureParis
  2. 2.Max-Planck-Institut für MathematikBonn
  3. 3.Erwin Schrödinger Institut für Mathematische PhysikWien

Personalised recommendations