Skip to main content
Log in

Accessibility of starch to enzymatic degradation in injection-molded starch-plastic composites

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Most of the starch in starch-polyethylene-co-acrylic acid (EAA)-polyethylene (PE) composites prepared by injection molding was not accessible to starch-hydrolyzing enzymes. Even when these composites were treated with enzyme in the presence of Triton X-100 for 96 h, little starch hydrolysis was observed. However, when the starch-plastic material was pulverized, both the extent and the rate of starch hydrolysis increased dramatically, with about 70% hydrolysis of the starch within 18 h. Reactions carried out for up to 96 h showed that, while the enzyme was active, the reaction reached a plateau, achieving a total of 80% starch hydrolysis. Fourier transform infrared (FTIR) spectroscopy revealed that only starch, and not EAA or PE, was affected by enzyme in pulverized samples. Results indicated that while 80% of the starch in these composites was transiently inaccessible, perhaps due to EAA and PE forming an impermeable barrier to the enzyme, the other 20% remained inaccessible to enzymes. Also, the rate of starch digestion as determined by solubilized reducing sugar correlated with the particle size of the pulverized material, suggesting that a large available surface area is critical for rapid starch degradation in such composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Fanta, C. L. Swanson, and W. M. Doane (1992)Carbohydr. Polym. 17 51–58.

    Google Scholar 

  2. F. H. Otey, R. P. Westhoff, and C. R. Russell (1977)Ind. Eng. Chem. Prod. Res. Dev. 16 305–308.

    Google Scholar 

  3. F. H. Otey and R. P. Westhoff (1982) U.S. Patent 4,337,181.

  4. C. L. Swanson, R. L. Shogren, G. F. Fanta, and S. H. Imam (1993)J. Environ. Polym. Degrad. 1 155–165.

    Google Scholar 

  5. G. F. Fanta, C. L. Swanson, and R. L. Shogren (1992)J. Appl. Polym. Sci. 44 2037–2042.

    Google Scholar 

  6. J. M. Gould, S. H. Gordon, L. B. Dexter, and C. L. Swanson (1990) in J. E. Glass and G. Swift (Eds.),Agricultural and Synthetic Polymers: Biodegradability and Utilization, ACS Symposium Series No. 433, American Chemical Society, Washington, DC, pp. 65–75.

    Google Scholar 

  7. B. K. Jasberg, C. L. Swanson, R. L. Shogren, and W. M. Doane (1992)J. Polym. Mat. 9 163–170.

    Google Scholar 

  8. U.S. Congress, Office of Technology Assessment (1993)Biopolymer: Making Materials Nature's Way, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  9. S. H. Imam, J. M. Gould, S. H. Gorden, M. P. Kinney, A. M. Ramsey, and T. R. Tosteson (1992)Curr. Microbiol. 25 1–8.

    Google Scholar 

  10. R. L. Shogren, A. R. Thompson, F. C. Felker, R. E. Harry-Ókuru, S. H. Gordon, R. V. Greene, and J. M. Gould (1991).J. Appl. Polym. Sci. 44 1971–1978.

    Google Scholar 

  11. R. L. Shogren, A. R. Thompson, R. V. Greene, S. H. Gordon, and G. L. Cote (1991)J. Appl. Polym. Sci. 47 2279–2286.

    Google Scholar 

  12. S. H. Imam, S. H. Gordon, A. R. Thompson, R. E. Harry-Ókuru, and R. V. Greene (1993)Biotechnol. Techniq. 7 791–794.

    Google Scholar 

  13. W. S. Hoffman (1937)J. Biol. Chem. 120 51–55.

    Google Scholar 

  14. S. H. Imam, A. Burgess-Cassler, G. L. Cote, S. H. Gordon, and F. L. Baker (1991)Curr. Microbiol. 22 365–370.

    Google Scholar 

  15. S. H. Imam and J. M. Gould (1990)Appl. Environ. Microbiol. 56 872–876.

    Google Scholar 

  16. S. H. Imam, R. V. Greene, and H. L. Griffin (1990)Appl. Environm. Microbiol. 56 1317–1322.

    Google Scholar 

  17. S. H. Imam, R. V. Greene, and H. L. Griffin (1993)Appl. Environ. Microbiol. 59 1259–1263.

    Google Scholar 

  18. S. H. Imam and R. E. Harry-Ókuru (1991)Appl. Environ. Microbiol. 57 1128–1133.

    Google Scholar 

  19. S. H. Imam and W. J. Snell (1987)Appl. Environ. Microbiol. 53 1701–1704.

    PubMed  Google Scholar 

  20. S. H. Imam and W. J. Snell (1988)J. Cell Biol. 106 2211–2221.

    PubMed  Google Scholar 

  21. A. Burgess-Cassler, S. H. Imam, and J. M. Gould (1991)Appl. Environ. Microbiol. 57 612–614.

    Google Scholar 

  22. Amylase Research Society of Japan (1988)Handbook of Amylases and Related Enzymes, Pergamon Press, New York.

    Google Scholar 

  23. J. F. Roybt (1984) in Whistler, BeMiller, and Paschall (Eds.),Starch: Chemistry and Technology, Academic Press, New York, pp. 87–123.

    Google Scholar 

  24. J. S. Peanasky, J. M. Long, and R. P. Wool (1991)J. Polym. Sci. B Polym. Phys. Ed. 29 565–579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The mention of firms names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over the firms or similar products not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imam, S.H., Gordon, S.H., Burgess-Cassler, A. et al. Accessibility of starch to enzymatic degradation in injection-molded starch-plastic composites. J Environ Polym Degr 3, 107–113 (1995). https://doi.org/10.1007/BF02067486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067486

Key words

Navigation