Skip to main content
Log in

Electrical resistance characteristics of starch foams

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The insulative character of expanded polystyrene loose-fill packing material supports the immobile triboelectric charge on its surface, causing static cling. One beneficial property of starch-based loose-fill is its antistatic behavior, which prevents the buildup of electrostatic charges on the foam surface, resulting in no static cling. This investigation explores the electrical resistance characteristics of plasticized starch materials such as commercial loose-fill. Electrical resistance standards used in this study to measure surface resistance and static decay properties are ASTM D 257-78, EOS/ESD S-11, and EIA 541. Following these established testing protocols, the electrical resistance of starch-based and expanded polystyrene loose-fill is quantified. Surface resistivity, measured at 12% RH, of starch-based loose-fill products is less than 1.0×1012 Ω per square characteristic of inherently static dissipative materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Lacourse and P. A. Altieri (1989) U.S. patent 4,863.655.

  2. N. L. Lacourse and P. A. Altieri (1990)Proceedings of the Corn Utilization Conference III, National Corn Growers Association, St. Louis, MO.

    Google Scholar 

  3. J. Afinsenet al. (1992) Expandable and expanded (Foamed) solid products.PCT Int. Appl. WO92, 08.759.

    Google Scholar 

  4. Mitsuo Nagai, Yoshinori Tokugawa, Fumiaki Tsuda, and Hiroshi Iwasaki (1994) in Y. Doi and K. Fukuda (Eds.),Biodegradable Plastics and Polymers, Elsevier Science B.V., Amsterdam, pp. 459–463.

    Google Scholar 

  5. American Heritage Electronic Dictionary (1992) Houghton Mifflin, New York.

  6. K. N. Mathes (1986) in H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges (Eds.),Encyclopedia of Polymer Science and Engineering, Vol. 5, John Wiley & Sons, New York, pp. 584–585.

    Google Scholar 

  7. C. C. Ku and R. Liepins (1987)Electrical Properties of Polymers: Chemical Principles, Hanser, New York, p. 5.

    Google Scholar 

  8. B. A. Unger (1986)Quality 25, 14–16.

    Google Scholar 

  9. C. C. Ku and R. Liepins (1987)Electrical Properties of Polymers: Chemical Principles, Hanser, New York, pp. 238–239.

    Google Scholar 

  10. ESD (1983)Standard Test Methods for D-C Resistance or Conductance of Insulating Materials, ASTM D 257-78, American Society for Testing & Materials, Philadelphia, PA, pp. 74–89.

    Google Scholar 

  11. ESD (1993)Surface Resistance Measurement of Static Dissipative Planar Materials, EOS/ESD S11.11-1993, ESD Association, Rome, New York.

    Google Scholar 

  12. EIA (1988)Packaging Material Standards for ESD Sensitive Items, EIA Standard 541, Electronic Industries Association, Washington, DC.

    Google Scholar 

  13. G. Baumgartner (1987)EOS/ESD Symposium, 9, ESD Association, Rome, New York, pp. 18–27.

    Google Scholar 

  14. B. N. Stevens (1986)EOS/ESD Symposium, 8, ESD Association, Rome, New York, pp. 148–149.

    Google Scholar 

  15. S. Weitz (1993)EMC Test and Design.

  16. Monroe Electronics, Inc. (1991) Operator's Manual:Model 272 Portable Surface Resistivity/Resistance Meter, Lydonville, NY, Oct.

  17. N. S. Rubin (1993)EE-Evaluation Engineering.

  18. ESD (1994)ESD Association Advisory for Electrostatic Discharge Terminology Glossary, ESD Association, Rome, New York.

    Google Scholar 

  19. Electro-Tech Systems, Inc. (1994) Product Brochure:Model 406D Static Decay Meter, Glenside, PA, Oct.

  20. Electro-Tech Systems, Inc. (1994) Product Brochure:Model 518 Automatically Controlled Environmental Chamber, Glenside, PA, May.

  21. Mettler-Toledo Inc. (1994) Operating Instructions:Model DL35 Karl Fisher Titrator, Hightstown, NJ.

  22. Mettler-Toledo Inc. (1990) Operating Instructions:Model DO301 Drying Oven, Hightstown, NJ.

  23. R. A. Reck (1986) In H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges (Eds.),Encyclopedia of Polymer Science and Engineering, Vol. 2, John Wiley & Sons, New York, pp. 99–115.

    Google Scholar 

  24. J. T. McClave and P. G. Benson (1991)Statistics for Business and Economics, Dellen, San Francisco, pp. 272, 402–407.

    Google Scholar 

  25. P. D. Tatarka (1995)Proceedings of the SPE 53rd Annual Technical Conference, 41, Society of Plastics Engineers, Brookfield, CT, pp. 2225–2231.

    Google Scholar 

  26. D. Trimmel, C. L. Swanson, and G. F. Fanta (1993)J. Appl. Polym. Sci. 48, 1665–1675.

    Google Scholar 

  27. J. M. Crosby and C. S. Adams (1987)EOS/ESD Symp. 9, 28–35.

    Google Scholar 

  28. J. A. Bradford (1993)EOS/ESD Symp. 15, 201–207.

    Google Scholar 

  29. S. E. Shelton (1982)Best's Safety Directory.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatarka, P.D. Electrical resistance characteristics of starch foams. J Environ Polym Degr 4, 149–156 (1996). https://doi.org/10.1007/BF02067449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067449

Key words

Navigation