Electrical resistance characteristics of starch foams

  • Paul D. Tatarka
Article

Abstract

The insulative character of expanded polystyrene loose-fill packing material supports the immobile triboelectric charge on its surface, causing static cling. One beneficial property of starch-based loose-fill is its antistatic behavior, which prevents the buildup of electrostatic charges on the foam surface, resulting in no static cling. This investigation explores the electrical resistance characteristics of plasticized starch materials such as commercial loose-fill. Electrical resistance standards used in this study to measure surface resistance and static decay properties are ASTM D 257-78, EOS/ESD S-11, and EIA 541. Following these established testing protocols, the electrical resistance of starch-based and expanded polystyrene loose-fill is quantified. Surface resistivity, measured at 12% RH, of starch-based loose-fill products is less than 1.0×1012 Ω per square characteristic of inherently static dissipative materials.

Key words

Starch loose-fill electrostatics resistivity static dissipation antistatic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. L. Lacourse and P. A. Altieri (1989) U.S. patent 4,863.655.Google Scholar
  2. 2.
    N. L. Lacourse and P. A. Altieri (1990)Proceedings of the Corn Utilization Conference III, National Corn Growers Association, St. Louis, MO.Google Scholar
  3. 3.
    J. Afinsenet al. (1992) Expandable and expanded (Foamed) solid products.PCT Int. Appl. WO92, 08.759.Google Scholar
  4. 4.
    Mitsuo Nagai, Yoshinori Tokugawa, Fumiaki Tsuda, and Hiroshi Iwasaki (1994) in Y. Doi and K. Fukuda (Eds.),Biodegradable Plastics and Polymers, Elsevier Science B.V., Amsterdam, pp. 459–463.Google Scholar
  5. 5.
    American Heritage Electronic Dictionary (1992) Houghton Mifflin, New York.Google Scholar
  6. 6.
    K. N. Mathes (1986) in H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges (Eds.),Encyclopedia of Polymer Science and Engineering, Vol. 5, John Wiley & Sons, New York, pp. 584–585.Google Scholar
  7. 7.
    C. C. Ku and R. Liepins (1987)Electrical Properties of Polymers: Chemical Principles, Hanser, New York, p. 5.Google Scholar
  8. 8.
    B. A. Unger (1986)Quality 25, 14–16.Google Scholar
  9. 9.
    C. C. Ku and R. Liepins (1987)Electrical Properties of Polymers: Chemical Principles, Hanser, New York, pp. 238–239.Google Scholar
  10. 10.
    ESD (1983)Standard Test Methods for D-C Resistance or Conductance of Insulating Materials, ASTM D 257-78, American Society for Testing & Materials, Philadelphia, PA, pp. 74–89.Google Scholar
  11. 11.
    ESD (1993)Surface Resistance Measurement of Static Dissipative Planar Materials, EOS/ESD S11.11-1993, ESD Association, Rome, New York.Google Scholar
  12. 12.
    EIA (1988)Packaging Material Standards for ESD Sensitive Items, EIA Standard 541, Electronic Industries Association, Washington, DC.Google Scholar
  13. 13.
    G. Baumgartner (1987)EOS/ESD Symposium, 9, ESD Association, Rome, New York, pp. 18–27.Google Scholar
  14. 14.
    B. N. Stevens (1986)EOS/ESD Symposium, 8, ESD Association, Rome, New York, pp. 148–149.Google Scholar
  15. 15.
    S. Weitz (1993)EMC Test and Design.Google Scholar
  16. 16.
    Monroe Electronics, Inc. (1991) Operator's Manual:Model 272 Portable Surface Resistivity/Resistance Meter, Lydonville, NY, Oct.Google Scholar
  17. 17.
    N. S. Rubin (1993)EE-Evaluation Engineering.Google Scholar
  18. 18.
    ESD (1994)ESD Association Advisory for Electrostatic Discharge Terminology Glossary, ESD Association, Rome, New York.Google Scholar
  19. 19.
    Electro-Tech Systems, Inc. (1994) Product Brochure:Model 406D Static Decay Meter, Glenside, PA, Oct.Google Scholar
  20. 20.
    Electro-Tech Systems, Inc. (1994) Product Brochure:Model 518 Automatically Controlled Environmental Chamber, Glenside, PA, May.Google Scholar
  21. 21.
    Mettler-Toledo Inc. (1994) Operating Instructions:Model DL35 Karl Fisher Titrator, Hightstown, NJ.Google Scholar
  22. 22.
    Mettler-Toledo Inc. (1990) Operating Instructions:Model DO301 Drying Oven, Hightstown, NJ.Google Scholar
  23. 23.
    R. A. Reck (1986) In H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges (Eds.),Encyclopedia of Polymer Science and Engineering, Vol. 2, John Wiley & Sons, New York, pp. 99–115.Google Scholar
  24. 24.
    J. T. McClave and P. G. Benson (1991)Statistics for Business and Economics, Dellen, San Francisco, pp. 272, 402–407.Google Scholar
  25. 25.
    P. D. Tatarka (1995)Proceedings of the SPE 53rd Annual Technical Conference, 41, Society of Plastics Engineers, Brookfield, CT, pp. 2225–2231.Google Scholar
  26. 26.
    D. Trimmel, C. L. Swanson, and G. F. Fanta (1993)J. Appl. Polym. Sci. 48, 1665–1675.Google Scholar
  27. 27.
    J. M. Crosby and C. S. Adams (1987)EOS/ESD Symp. 9, 28–35.Google Scholar
  28. 28.
    J. A. Bradford (1993)EOS/ESD Symp. 15, 201–207.Google Scholar
  29. 29.
    S. E. Shelton (1982)Best's Safety Directory.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Paul D. Tatarka
    • 1
  1. 1.Food Physical Chemistry Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDAPeoria

Personalised recommendations