Advertisement

World Journal of Surgery

, Volume 16, Issue 4, pp 770–776 | Cite as

Invasion by cultured human follicular thyroid cancer correlates with increasedβ1 integrins and production of proteases

  • Michael J. Demeure
  • Caroline H. Damsky
  • Fred Elfman
  • Peter E. Goretzki
  • Mariwil G. Wong
  • Orlo H. Clark
Article

Abstract

A recognized model of tumor invasion requires cells to adhere to epithelial basement membrane and extracellular matrix components triggering release of proteases thus allowing cancer cells to invade the substrate. This adhesion is mediated byβ1 integrins, a family of receptors to substrates such as collagen, laminin, and fibronectin. In order to study tumor invasion in follicular thyroid cancer (FTC), we used cell lines derived from a single patient's FTC primary tumor (FTC-133), neck lymph node metastases (FTC-236), and lung metastases (FTC-238).In vitro invasion as determined by the ability of the tumor cells to penetrate Matrigel® was assessed by scanning electron microscopy. FTC-133 did not invade, FTC-236 was moderately invasive, and FTC-238 was highly invasive. Immunoprecipation with a monoclonal antibody toβ1 integrin subunits and SDS-PAGE showed increased synthesis and flow cytometry showed increased expression of this subunit in FTC-236 and FTC-238 compared to FTC-133. Proteolytic activity was assessed by gelatin zymography. FTC-238 cell extract and conditioned media exhibited a more complex array of proteases consistent with activated type I collagenase and stromelysin compared to the less invasive clones, however 72 and 92 kd gelatinases consistent with type IV collagenases were present in the conditioned media from all three lines. In conclusion,in vitro invasion parallelsin vivo metastasis by the source cells in the FTC-133/236/238 cell-lines. The ability to invade basement membrane preparation correlates with increased synthesis and expression ofβ1 integrins and activation of tumor proteases.

Keywords

Conditioned Medium Neck Lymph Node Gelatin Zymography Integrin Subunit Follicular Thyroid Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Pour qu'un modèle d'invasion tumorale soit valable, il faut que les cellules adhèrent à la membrane basale épithéliale et que des composantes du matrix extracellulaire facilitent le largage des protéases permettant aux cellules cancéreuses d'envahir le substratum. Cette adhésion est soue le contrôle des intégrines béta 1, une famille de récepteurs pour les substrats tels que le collagène, la laminine et la fibronectine. Pour étudier l'invasion tumorale dans le cancer folliculaire de la thyroïde (CFT), nous avons employé des cellules dérivées d'un CFT primitif (CFT-133), de métastases cervicales (CFT-236) et pulmonaires (CFT-238) d'un seul patient. L'invasionin vitro a été déterminée comme la capacité des cellules tumorales de pénétrer le Matrigel TM, évaluée en microscopie électronique. Cette invasion a été nulle pour les cellules CFT-133, modérée pour les CFT-236 et importante pour les CFT-238. L'immunoprécipitation avec des anticorps monoclonaux vis-à-vis des sous-unités d'intégrine béta-1 et SDS-PAGE a montré que la synthèse était augmentée; la cytométrie de flux a démontré une expression accrue de cette sous-unité en CFT-236 et CFT-238 comparée à des cellules CFT-133. L'activité protéolytique a été évaluée par la zymographie en gélatine. L'extrait de cellules CFT-238 et le média conditionné (MC) contenaient un groupe plus complexe de protéases telles une collagènase de type I et une stromélysine activées comparées à des clones moins invasifs. Les gélatinases 72 kd et 92 kd, cependant, telles les collagénases du type IV, étaient présentes dans les MC des trois lignées. En conclusion, l'invasionin vitro est similaire aux métastasesin vivo par les cellules source des lignées cellulaires CFT-133/236/238. La capacité d'envahir la membrane basale est correlée avec l'augmentation de la synthèse et de l'expression des intégrines béta 1 et l'activation des protéases tumorales.

Resumen

Un modelo válido de invasión tumoral requiere que las células adhieran a la membrana basal y que los componentes de la matriz extracelular activen la liberación de proteasas para que las células cancerosas puedan invadir el sustrato. La adherencia es mediada por las integrinasβ-1, una familia de receptores a sustratos tales como colágeno, laminina y fibronectina, todos componentes de la membrana basal o de la matriz extracelular. Con el objeto de estudiar la invasión tumoral en el cáncer folicular de la glándula tiroides (CFT), utilizamos líneas celulares derivadas del tumor primario de un paciente único con CFT (CFT-133), de las metástasis ganglionares cervicales (CFT-236) y de las metástasis pulmonares (CFT-238). La invasiónin vitro, determinada por la capacidad de las células tumorales de penetrar Matrigel, fue valorada mediante microscopía electrónica de barrido: CFT-133 no presentó invasión, CFT-236 apareció moderadamente invasivo y CFT-238 apareció altamente invasivo. La inmunoprecipitación con un anticuerpo monoclonal contra subunidades de integrinaβ-1 y SDS-PAGE demostró incremento en la síntesis, y la citometría de flujo demostró incremento de la expresión de esta subunidad en CFT-236 y en CFT-238, en comparación con CFT-133. La actividad proteolítica fue valorada por zimografía de gelatina. El extracto de CFT-238 y el medio condicionado (MC) exhibieron una mayor variedad de proteasas consistente con colagenasa activada tipo I y estromelisina, en comparación con con los clones menos invasivos; sin embargo, las colagenasas kd 72 y 92, consistentes con colagenasas tipo IV, estuvieron presentes en los MC de las tres líneas celulares. En conclusión, la invasiónin vitro se correlaciona con las metástasisin vivo por las células fuente en las líneas celulares CFT133/236/238. La capacidad para invadir la membrana basal de la preparación se correlaciona con síntesis y expresión incrementadas de las integrinasβ-1 y activación de las proteasas tumorales.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Löwhagen, T., Granberg, P.O., Lundell, G., Skinnari, P., Sundblad, R., Willems, J.S.: Aspiration biopsy cytology (ABC) in nodules of the thyroid gland suspected to be malignant. Surg. Clin. North Am.59:3, 1979PubMedGoogle Scholar
  2. 2.
    Hedinger, C.: Histological typing of thyroid tumours, Geneva, World Health Organization, 1974, pp. 15–21Google Scholar
  3. 3.
    Liotta, L.A., Rao, C.N., Weaver, U.M.: Biochemical interactions of tumor cells with the basement membrane. Annu. Rev. Biochem.55:1037, 1986PubMedGoogle Scholar
  4. 4.
    Goretzki, P.E., Frilling, A., Simon, D., Roeher, H.D.: Growth regulation of normal thyroids and thyroid tumors in man. Recent Results Cancer Res.118:48, 1990PubMedGoogle Scholar
  5. 5.
    Albini, A., Iwamoto, Y., Kleinman, H.K., Martin G.R., Aaronson, S.A., Kozlowski, J.M., McEwan, R.N.: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res.47:3239, 1987PubMedGoogle Scholar
  6. 6.
    Kramer, R., McDonald, K.A., Crowley, E., Ramos, D., Damsky, C.: Integrin-related complexes mediate the adhesion of melanoma cells to basement membrane. Cancer Res.49:393, 1989PubMedGoogle Scholar
  7. 7.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randell, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193:265, 1951PubMedGoogle Scholar
  8. 8.
    Hall, D.E., Reichardt, L.F., Crowley, E., Holley, B., Moezzi, H., Sonnenberg, A., Damsky, C.H.: Theα 1/β 1 andα 6/β 1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J. Cell Biol.110:2175, 1990PubMedGoogle Scholar
  9. 9.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature (Lond.)227:680, 1970Google Scholar
  10. 10.
    Unemori, E.N., Werb, Z.: Reorganization of polymerized actin: A possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels. J. Cell Biol.103:1021, 1986PubMedGoogle Scholar
  11. 11.
    Demeure, M.J., Hughes-Fulford, M., Goretzki, P.E., Duh, Q.Y., Clark, O.H.: Actin architecture of cultured human thyroid cancer cells: Predictor of differentiation? Surgery108:989, 1990Google Scholar
  12. 12.
    Goldberg, G.I., Wilhelm, S.M., Kronberger, A., Bauer, E.A., Grant, G.A., Eisen, A.Z.: Human fibroblast collagenase. J. Biol. Chem.261:6600, 1986PubMedGoogle Scholar
  13. 13.
    Liotta, L.A., Abe, S., Robey, P.G., Martin, G.R.: Preferential digestion of basement membrane collagen by an enzyme derived from metastatic murine tumor. Proc. Natl. Acad. Sci. U.S.A.76:2268, 1979PubMedGoogle Scholar
  14. 14.
    Wilhelm, S.M., Collier, I.E., Marmer, B.L., Eisen, A.Z., Grant, G.A., Goldberg, G.I.: SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem.264:17213, 1989PubMedGoogle Scholar
  15. 15.
    Spandidos, D.A., Wilkie, N.M.: Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature (London)310:469, 1984Google Scholar
  16. 16.
    Yamada, K.M., Yamada, S.S., Pastan, I.: Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc. Natl. Acad. Sci. U.S.A.73:1217, 1976PubMedGoogle Scholar
  17. 17.
    Hynes, R.O., Yamada, K.M.: Fibronectins: Multifunctional modular glycoproteins. J. Cell Biol.95:369, 1982PubMedGoogle Scholar
  18. 18.
    Takada, Y., Wayner, E., Carter, W., Hemler, M.: Extracellular matrix receptors, ECMRII and ECMLRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J. Cell Biochem.37:385, 1988PubMedGoogle Scholar
  19. 19.
    Plantefaber, L.C., Hynes, R.O.: Changes in integrin receptors on oncogenically transformed cells. Cell56:281, 1989PubMedGoogle Scholar
  20. 20.
    Saga, S., Chen, W.-T., Yamada, K.M.: Enhanced fibronectin receptor expression in Rous Sarcoma Virus-induced tumors. Cancer Res.48:5510, 1988PubMedGoogle Scholar
  21. 21.
    Dedhar, S., Saulnier, R.: Alterations in integrin receptor expression on chemically transformed human cells: Specific enhancement of laminin and collagen receptor complexes. J. Cell Biol.110:481, 1990PubMedGoogle Scholar
  22. 22.
    Tryggvason, K., Moyhtya, M., Salo, T.: Proteolytic degradation of extracellular matrix in tumor invasion. Biochim. Biophys. Acta907:191, 1987PubMedGoogle Scholar
  23. 23.
    Birbeck, M.S.C., Wheatly, D.N.: An electron microscopic study of the invasion of ascites tumor cells into the abdominal wall. Cancer Res.25:490, 1965PubMedGoogle Scholar
  24. 24.
    Kao, R.T., Stern, R.: Collagenases in human breast carcinoma cell lines. Cancer Res.46:1349, 1986PubMedGoogle Scholar
  25. 25.
    Zucker, S., Turpeeniemi-Hujanen, T., Wieman, J.M., Lysik, R.M.: Characterization of a connective tissue degrading metalloproteinase from human small cell lung cancer cells. Clin. Exp. Metastasis6:363, 1988PubMedGoogle Scholar
  26. 26.
    Zucker, S.: A critical appraisal of the role of proteolytic enzymes in cancer invasion: Emphasis on tumor surface proteinases. Cancer Invest.6:219, 1988PubMedGoogle Scholar
  27. 27.
    Werb, Z., Tremble, P.M., Behrendtsen, O., Crowley, E., Damsky, C.H.: Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol.109:877, 1989PubMedGoogle Scholar
  28. 28.
    Turpeenniemi-Hujanen, T., Thorgeirsson, U.P., Rao, C.N., Liotta, L.A.: Laminin increases the release of type IV collagenase from malignant cells. J. Biol. Chem.261:1883, 1986PubMedGoogle Scholar
  29. 29.
    Hall, D.E., Reichardt, L.F., Crowley, E., Holley, B., Moezzi, H., Sonnenberg, A., Damsky, C.H.: Theα 1/β 1 andα 6/β 1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J. Cell Biol.110:2175, 1990PubMedGoogle Scholar
  30. 30.
    Schmid, I., Schmid, P., Giorgi, J.V.: Conversion of logarithmic channel numbers into relative linear fluorescence intensity. Cytometry9:533, 1988PubMedGoogle Scholar

Copyright information

© the Société Internationale de Chirurgie 1992

Authors and Affiliations

  • Michael J. Demeure
    • 1
    • 3
    • 2
  • Caroline H. Damsky
    • 1
    • 3
    • 2
  • Fred Elfman
    • 1
    • 3
    • 2
  • Peter E. Goretzki
    • 1
    • 3
    • 2
  • Mariwil G. Wong
    • 1
    • 3
    • 2
  • Orlo H. Clark
    • 1
    • 3
    • 2
  1. 1.Departments of Surgery, Anatomy and StomatologyUniversity of California and Veterans Administration Medical CenterSan FranciscoU.S.A.
  2. 2.Department of SurgeryUniversity of DüsseldorfGermany
  3. 3.Department of SurgeryMedical College of WisconsinMilwaukeeU.S.A.

Personalised recommendations