Evolutionary Ecology

, Volume 1, Issue 1, pp 37–46 | Cite as

Estimating the number of genetic elements that defer senescence inDrosophila

  • Leo S. Luckinbill
  • Michael J. Clare
  • Walter L. Krell
  • William C. Cirocco
  • Paula A. Richards


Although many different physiological and biochemical changes characterize the process of senescence, little is understood of the genetic elements that determine its age of onset. We provide here the first estimates of the number of genetic factors that extend longevity inDrosophila melanogaster. Life span was measured in F1, F2 and backcrosses of true-breeding long and short-lived stocks ofD. melanogaster, established by selection. Estimates of the number of effective factors delaying senescence range from about 0.3 to 1.5, indicating control by a single factor. The distribution of longevity shows this to arise as selection acts on the short-lived parental stock. Life span is extended at the cost of early fecundity.


Genetic elements estimate senescence Drosophila 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clare, M. and Luckinbill, L. (1985) The effect of gene-environment interaction on the expression of longevity.Heredity 55, 19–26.PubMedGoogle Scholar
  2. Clark, J.M. and Maynard Smith, J. (1955) The genetics and cytology ofDrosophila subobscura. XI. Hybrid vigour and longevity.Journal of Genetics 53, 172–80.Google Scholar
  3. Comfort, A. (1979)The Biology of Senescence. Churchill Livingstone, Edinburgh, Scotland.Google Scholar
  4. Darlington, C.D. (1937) The biology of crossing-over.Nature 140, 759–61.Google Scholar
  5. Johnson, T.E. and Wood, W.B. (1982) Genetic analysis of life span inCaenorhabditis elegans.Proceedings of the National Academy of Sciences of the USA 79, 6603–7.PubMedGoogle Scholar
  6. Klass, M.R. (1983) A method for isolation of longevity mutants in the nematodeCaenorhabditis elegans and initial results.Mechanisms of Aging and Development 22, 279–86.Google Scholar
  7. Lamb, M.J. (1964) The effects of radiation on the longevity of femaleDrosophila subobscura.Journal of Insect Physiology 10, 487–97.Google Scholar
  8. Lande, R. (1981) The minimum number of genes contributing to quantitative variation between and within populations.Genetics 99, 541–53.PubMedGoogle Scholar
  9. Lints, F.A. and Hoste, C. (1974) The Lansing effect revisited. I. Lifespan.Experimental Gerontology 9, 51–69.PubMedGoogle Scholar
  10. Lints, F.A., Stoll, J., Gruwez, G. and Lints, C.V. (1979) An attempt to select for increased longevity inDrosophila melanogaster.Gerontology 25, 192–204.PubMedGoogle Scholar
  11. Luckinbill, L.S., Arking, R., Clare, M.J., Cirocco, W.C. and Buck, S.A. (1984) Selection for delayed senescence inDrosophila melanogaster.Evolution 38(5), 996–1003.Google Scholar
  12. Luckinbill, L.S. and Clare, M. (1985) Selection for life span inDrosophila melanogaster.Heredity 55, 9–18.PubMedGoogle Scholar
  13. Luckinbill, L.S. and Clare, M. (1986) A density-threshold for the expression of longevity inDrosophila melanogaster.Heredity 56, 329–35.PubMedGoogle Scholar
  14. Maynard Smith, J. (1958) The effects of temperature and of egg-laying on the longevity ofDrosophila subobscura.Journal of Experimental Biology 35, 832–43.Google Scholar
  15. Medawar, P.B. (1952)An Unsolved Problem in Biology. H.K. Lewis, London.Google Scholar
  16. Mertz, D.B. (1975) Senescent decline in flour beetle populations selected for early adult fitness.Physiological Zoology 48, 1–23.Google Scholar
  17. Rose, M.L. (1984) Laboratory evolution of postponed senescence inDrosophila melanogaster.Evolution 38, 1004–10.Google Scholar
  18. Rose, M.L. and Charlesworth, B. (1980) A test of evolutionary theories of senescence.Nature 287, 141–2.PubMedGoogle Scholar
  19. Rose, M.L. and Charlesworth, B. (1981) Genetics of life-history inDrosophila melanogaster II. Exploratory selection experiments.Genetics 97, 187–96.PubMedGoogle Scholar
  20. Service, P.M., Hutchinson, E.W., Mackinley, M.D. and Rose, M.R. (1985) Resistance to environmental stress inDrosophila melanogaster selected for postponed senescence.Physiological Zoology 58(4), 380–9.Google Scholar
  21. Sokal, R.R. (1970) Senescence and genetic load: evidence fromTribolium Science 97, 1733–4.Google Scholar
  22. Wattiaux, J.M. (1968) Cumulative parental age effects inDrosophila subobscura.Evolution 22, 406–21.Google Scholar
  23. Williams, G.C. (1957) Pleiotropy, natural selection and the evolution of senescence.Evolution 11, 398–411.Google Scholar
  24. Wright, S. (1968)The Evolution and Genetics of Populations, Vol 1. Genetic and Biometrical Foundations. University of Chicago Press, Chicago, USA.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Leo S. Luckinbill
    • 1
  • Michael J. Clare
    • 1
  • Walter L. Krell
    • 1
  • William C. Cirocco
    • 1
  • Paula A. Richards
    • 1
  1. 1.Department of Biological SciencesWayne State UniversityDetroitUSA

Personalised recommendations