Skip to main content
Log in

Multivariable variogram and its application to the linear model of coregionalization

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

In this article, we present the multivariable variogram, which is defined in a way similar to that of the traditional variogram, by the expected value of a distance, squared, in a space withp dimensions. Combined with the linear model of coregionalization, this tool provides a way for finding the elementary variograms that characterize the different spatial scales contained in a set of data withp variables. In the case in which the number of elementary components is less than or equal to the number of variables, it is possible, by means of nonlinear regression of variograms and cross-variograms, to estimate the coregionalization parameters directly in order to obtain the elementary variables themselves, either by cokriging or by direct matrix inversion. This new tool greatly simplifies the procedure proposed by Matheron (1982) and Wackernagel (1985). The search for the elementary variograms is carried out using only one variogram (multivariable), as opposed to thep(p + 1)/2 required by the Matheron approach. Direct estimation of the linear coregionalization model parameters involves the creation of semipositive definite coregionalization matrices of rank 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, A. K., McIntyre, D. B., Welday, E. E., and Morton, D. M., 1967, A Test of Chemical Variability and Field Sampling Methods, Lakeview Mountain Tonalite, Lakeview Mountains Southern California Batholith: Calif. Div. Mines and Geology Spec. Rep. 92, p. 11–19.

    Google Scholar 

  • Bourgault, G., 1990, Estimation et Filtrage Multidimensionnel de Variables Aléatoires Régionalisées: Ecole Polytechnique de Montréal, rapport préthèse, 75 p.

  • Daly, C., Jeulin, D., and Lajaunie, C., 1989, Application of Multivariate Kriging to the Processing of Noisy Images,in M. Armstrong (Ed.), Geostatistics, Vol. 2, Quantitative Geology and Geostatistics: Kluwer Academic Publishers, p. 749–760.

  • David, M., and Dagbert, M., 1974, Lakeview Revisited: Variograms and Correspondence Analysis—New Tools for the Understanding of Geochemical Data: Proc. 5th Exploration Geochemistry Symposium, Elsevier, Amsterdam, p. 163–181.

    Google Scholar 

  • Davis, B. M., and Greenes, K. A., 1983, Estimation Using Spatially Distributed Multivariate Data: An Example With Coal Quality: Math. Geol., v. 15, p. 287–300.

    Google Scholar 

  • Galli, A., and Wackernagel, H., 1987, Multivariate Geostatistical Methods for Spatial Data Analysis,in E. Diday et al. (Eds.), Data Analysis and Information, Vol. 5: North-Holland, Amsterdam.

    Google Scholar 

  • Harff, J., and Davis, J. C., 1990, Regionalization in Geology by Multivariate Classification: Math. Geol., v. 22, p. 573–588.

    Google Scholar 

  • Ibanez, F., 1976, Contribution à l'Analyse Mathématique des Evènements en Ecologie Planctonique: Bull. Inst. Ocea., Monaco, v. 72, 96 p.

  • Journel, A. G., 1988, New Distance Measures: The Route Toward Truly Non-Gaussian Geostatistics: Math. Geol., v. 20, p. 459–475.

    Google Scholar 

  • Journel, A. G., and Huijbregts, Ch. J., 1978, Mining Geostatistics: Academic Press, London, 600 p.

    Google Scholar 

  • Mackas, D. L., 1984, Spatial Autocorrelation of Plankton Community Composition in a Continental Shelf Ecosystem: Limn. and Ocean., v. 29, p. 451–471.

    Google Scholar 

  • Mantel, N., 1967, The Detection of Disease Clustering and a Generalized Regression Approach: Cancer Res., v. 27, p. 209–220.

    Google Scholar 

  • Marcotte, D., 1990, Lake Sediments in the Manicouagan Area: Multivariate Analysis and Variography Used to Enhance Anomalous Response: Statistical Applications in the Earth Sciences, GSC paper 89-9.

  • Marcotte, D., and Fox, J. S., 1990, The Schefferville Area: Multivariate Analysis and Variography Used to Enhance Interpretation of Lake Sediment Geochemical Data: Journal of Geochemical Exploration, v. 38, p. 247–263.

    Google Scholar 

  • Marquardt, D., 1963, An Algorithm for Least-Squares Estimation of Nonlinear Parameter: SIAM Journal on Applied Mathematics, v. 11, p. 431–441.

    Google Scholar 

  • Matheron, G., 1982, Pour une Analyse Krigeante des Données Régionalisées, N-732: Centre de Géostatistique et de Morphologie Mathématique, Fontainebleau, 22 p.

    Google Scholar 

  • Moore, E. H., 1920, On the Reciprocal of the General Algebraic Matrix: Bull. Am. Math. Soc., v. 26, p. 394–395.

    Google Scholar 

  • Myers, D., 1982, Matrix Formulation of Co-Kriging: Math. Geol., v. 14, p. 249–257.

    Google Scholar 

  • Myers, D. E., 1983, Estimation of Linear Combinations and Cokriging: Math. Geol., v. 15, p. 633–637.

    Google Scholar 

  • Myers, D. E., 1984, Cokriging: New Developments, in Geostatistics for Natural Resource Characterization, G. Verly et al. (Eds.): D. Reidel, Dordrecht.

    Google Scholar 

  • Myers, D. E., 1985, Co-kriging: Methods and Alternatives,in P. Glaeser (Ed.), The Role of Data in Scientific Progress: Elsevier.

  • Myers, D. E., 1988a, Some Aspects of Multivariate Analysis,in C. F. Chung et al. (Eds.), Quantitative Analysis of Mineral and Energy Resources; Ridel, Dordrecht, p. 669–687.

    Google Scholar 

  • Myers, D. E., 1988b, Multivariate Geostatistics for Environmental Monitoring: Sciences de la Terre, v. 27, p. 411–427.

    Google Scholar 

  • Myers, D. E., 1988c, Interpolation with Positive Definite Functions: Sciences de la Terre, v. 28, p. 251–265.

    Google Scholar 

  • Myers, D. E., and Carr, J. R., 1984, Co-kriging and Principal Components Analysis: Bentonite Data Revisited: Sciences de la Terre, v. 21, p. 65–77.

    Google Scholar 

  • Oden, N. L., and Sokal, R. R., 1986, Directional Autocorrelation: An Extension of Spatial Correlograms to Two Dimensions: Syst. Zool., v. 35, p. 608–617.

    Google Scholar 

  • Orlóci, L., 1967, An Agglomerative Method for Classification of Plant Communities: Journ. Ecol., v. 55, p. 193–206.

    Google Scholar 

  • Penrose, R., 1955, A Generalized Inverse for Matrices: Proc. Cambridge Philos. Soc., v. 51, p. 406–418.

    Google Scholar 

  • Sandjivy, L., 1984, The Factorial Kriging Analysis of Regionalized Data—Its Application to Geochemical Prospecting,in G. Verly et al. (Eds.), Geostatistics for Natural Resources Characterization: NATO-ASI, Ser. C, v. 122, Part 1, p. 559–572.

    Google Scholar 

  • Serra, J., 1968, Les Structures Gigognes: Morphologie Mathématique et Interprétation Métallogénique: Mineralium Deposita, v. 3, p. 135–154.

    Google Scholar 

  • Sokal, R. R., 1986, Spatial Data Analysis and Historical Processes,in E. Diday et al. (Eds.), Data Analysis and Informatics, IV: Proc. Fourth Int. Symp. Data Anal. Informatics, Versailles, France, 1985, North-Holland, Amsterdam, p. 29–43.

    Google Scholar 

  • Wackernagel, H., 1985, L'Inférence d'un Modèle Linéaire en Géostatistique Multivariable: Thèse, Ecole Nationale Supérieure des Mines de Paris, 100 p.

  • Wackernagel, H., 1988, Geostatistical Techniques for Interpreting Multivariate Spatial Information,in C. F. Chung et al. (Eds.), Quantitative Analysis of Mineral Energy Resources: Reidel, Dordrecht, p. 393–409.

    Google Scholar 

  • Wackernagel, H., 1989, Description of a Computer Program for Analysing Multivariate Spatially Distributed Data: Compt. and Geosc., v. 15, p. 593–598.

    Google Scholar 

  • Wackernagel, H., and Butenuth, C., 1989, Caractérisation d'anomalies Géochimiques par la Géostatistique Multivariable: Journ. of Geochm. Explor., v. 32, p. 437–444.

    Google Scholar 

  • Wackernagel, H., Petitgas, P., and Touffait, Y., 1989, Overview of Methods for Co-regionalization Analysis,in M. Armstrong (Ed.), Geostatistics, Vol. 1, Quantitative Geology and Geostatistics: Kluwer Academic Publishers, p. 409–420.

  • Webster, R., 1973, Automatic Soil-Boundary Location from Transect Data: Math. Geol., v. 5, p. 27–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgault, G., Marcotte, D. Multivariable variogram and its application to the linear model of coregionalization. Math Geol 23, 899–928 (1991). https://doi.org/10.1007/BF02066732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02066732

Key words

Navigation