Reaction Kinetics and Catalysis Letters

, Volume 33, Issue 1, pp 93–98 | Cite as

Analytical investigation of a four-variable model of the BZ reaction

  • H. Farkas
  • Z. Noszticzius


It is proved analytically that the four-variable model reported in the preceding paper [1] has a unique stationary solution for each set of rate constants. An upper and a lower boundary for the stationary concentrations are established.


Physical Chemistry Catalysis Lower Boundary Stationary Solution Analytical Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Аналитически доказано, что модель четырех переменных, описаная в предыдущем сообщении, имеет уникальное стационарное решение для каждого набора констант скоростей. Определены высшие и низшие пределы стационарных концентраций.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Gáspár, Z. Noszticzius, H. Farkas: React. Kinet. Catal. Lett.,33, 81 (1987)Google Scholar
  2. 2.
    Z. Noszticzius, P. Stirling, M. Wittmann: J. Phys. Chem.,89, 4914 (1985)Google Scholar
  3. 3.
    J.J. Tyson: in “Oscillations and Traveling Waves in Chemical Systems”; R.J. Field, M. Burger, Eds., Wiley, New York 1985.Google Scholar
  4. 4.
    G.A. Korn, T.M. Korn: “Mathematical Handbook for Scienctists and Engineers”. McGraw-Hill, New York 1961.Google Scholar
  5. 5.
    S. Gyökér, H. Farkas: work in progressGoogle Scholar
  6. 6.
    J. Guckenheimer, P. Holmes: “Nonlinear Oscillations”. Springer, New York 1983.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • H. Farkas
    • 1
  • Z. Noszticzius
    • 1
  1. 1.Department of Chemical Engineering, Institute of PhysicsTechnical University of BudapestBudapestHungary

Personalised recommendations