On a property of families of sets

  • P. Erdős
  • A. Hajnal


Induction Hypothesis Unsolved Problem Chromatic Number Ordinal Number Cardinal Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. W. Miller, On a property of families of sets,Comptes Rendus Varsovie,30 (1937), pp. 31–38.Google Scholar
  2. [2]
    A. Tarski, Sur la décomposition des ensembles en sous ensembles presque disjoint,Fundamenta Math.,14 (1929), pp. 205–215.MATHGoogle Scholar
  3. [3]
    J. Łos, Linear equations and pure subgroups,Bull. Acad. Polon. Sci. Math.,7 (1959), pp. 13–18.MATHGoogle Scholar
  4. [4]
    F. Bernstein, Zur Theorie der trigonometrischen Reihen,Leipz. Ber.,60 (1908), pp. 325–338.Google Scholar
  5. [5]
    P. Erdős andA. Hajnal, On the structure of set mappings,Acta Math. Acad. Sci. Hung.,9 (1958), pp. 111–131.CrossRefGoogle Scholar
  6. [6]
    A. Hajnal, Some problems and results on set theory,Acta Math. Acad. Sci. Hung.,11 (1960), pp. 277–298.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Ulam, Zur Maßtheorie in der allgemeinen Mengenlehre,Fundamenta Math.,16 (1930), pp. 140–150.MATHGoogle Scholar
  8. [8]
    P. Erdős andA. Tarski, On families of mutually exclusive sets,Annals of Math. 44 (1943), pp. 315–329.CrossRefGoogle Scholar
  9. [9]
    P. R. Halmos andH. E. Vaughan, The marriage problem,Amer. Journ. Math.,72 (1950), pp. 214–215.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    N. G. de Bruijn andP. Erdős, A colour problem for infinite graphs and a problem in the theory of relations,Indag. Math.,13 (1951), pp. 371–373.Google Scholar

Copyright information

© Akadémiai Kiadó 1961

Authors and Affiliations

  • P. Erdős
    • 1
  • A. Hajnal
    • 1
  1. 1.Budapest

Personalised recommendations