On a property of families of sets

  • P. Erdős
  • A. Hajnal


Induction Hypothesis Unsolved Problem Chromatic Number Ordinal Number Cardinal Number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. W. Miller, On a property of families of sets,Comptes Rendus Varsovie,30 (1937), pp. 31–38.Google Scholar
  2. [2]
    A. Tarski, Sur la décomposition des ensembles en sous ensembles presque disjoint,Fundamenta Math.,14 (1929), pp. 205–215.MATHGoogle Scholar
  3. [3]
    J. Łos, Linear equations and pure subgroups,Bull. Acad. Polon. Sci. Math.,7 (1959), pp. 13–18.MATHGoogle Scholar
  4. [4]
    F. Bernstein, Zur Theorie der trigonometrischen Reihen,Leipz. Ber.,60 (1908), pp. 325–338.Google Scholar
  5. [5]
    P. Erdős andA. Hajnal, On the structure of set mappings,Acta Math. Acad. Sci. Hung.,9 (1958), pp. 111–131.CrossRefGoogle Scholar
  6. [6]
    A. Hajnal, Some problems and results on set theory,Acta Math. Acad. Sci. Hung.,11 (1960), pp. 277–298.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Ulam, Zur Maßtheorie in der allgemeinen Mengenlehre,Fundamenta Math.,16 (1930), pp. 140–150.MATHGoogle Scholar
  8. [8]
    P. Erdős andA. Tarski, On families of mutually exclusive sets,Annals of Math. 44 (1943), pp. 315–329.CrossRefGoogle Scholar
  9. [9]
    P. R. Halmos andH. E. Vaughan, The marriage problem,Amer. Journ. Math.,72 (1950), pp. 214–215.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    N. G. de Bruijn andP. Erdős, A colour problem for infinite graphs and a problem in the theory of relations,Indag. Math.,13 (1951), pp. 371–373.Google Scholar

Copyright information

© Akadémiai Kiadó 1961

Authors and Affiliations

  • P. Erdős
    • 1
  • A. Hajnal
    • 1
  1. 1.Budapest

Personalised recommendations