Journal of Russian Laser Research

, Volume 17, Issue 3, pp 259–285 | Cite as

Dynamics of a radiating surface discharge

  • S. V. Mit'ko
  • V. N. Ochkin


We have elaborated a code for numerical treatment of two-dimensional problems of the dynamics of a surface discharge with inclusion of radiative energy transfer. The gas dynamic, electric, and radiative properties of a surface discharge in atmospheric air have been studied experimentally for a total energy input of 100 J/cm in the input power range 3–6 MW/cm. A new technique involving a discharge sliding along a conducting surface is applied to initiate an extended surface discharge. The calculations agree satisfactorily with the experiments. The method elaborated here makes it possible to calculate a broad class of linear discharges with an eye to produce a radiation source with problem-oriented spectral power characteristics.


Microwave Input Power Radiative Energy Spectral Power Conducting Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. S. Marshak (ed.),Pulsed Light Sources [in Russian], Energiya, Moscow (1978).Google Scholar
  2. 2.
    B. L. Borovich, V. S. Zuev, V. A. Katulin, et al.,High-Current Radiating Discharges and Gas Lasers with Optical Pumping, Progress in Science and Technology, Series on Radioengineering, Vol 15 [in Russian], VINITI, Moscow (1978).Google Scholar
  3. 3.
    I. V. Dvornikov, Yu. M. Kolpakov, V. A. Lagutin, et al.,Zh. Prikl. Spektrosk.,21, 227 (1974).Google Scholar
  4. 4.
    A. F. Aleksandrov and A. A. Rukhadze,The Physics of High-Current Electric Discharge Light Sources [in Russian], Atomizdat, Moscow (1976).Google Scholar
  5. 5.
    V. V. Boev and A. S. Kamrukov,Proceedings of the Second Soviet Union Symposium on Radiative Plasma Dynamics, Part I, Moscow Technical State University, Moscow (1991), p. 27.Google Scholar
  6. 6.
    S. V. Mit'ko, A. V. Paramonov, and A. P. Shirokikh,Proceedings of the Second Soviet Union Symposium on Radiative Plasma Dynamics, Part I, Moscow Technical State University, Moscow (1991), p. 35.Google Scholar
  7. 7.
    A. A. Samarsky and Yu. P. Popov,Difference Methods of Solution of Gas Dynamic Problems [in Russian], Nauka, Moscow (1980).Google Scholar
  8. 8.
    B. N. Chetverushkin,Mathematical Simulation of Problems of Radiative Gas Dynamics [in Russian], Nauka, Moscow (1985).Google Scholar
  9. 9.
    N. M. Kuznetsov,Thermodynamic Functions and Shock Adiabats in Air at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).Google Scholar
  10. 10.
    R. W. P. McWhirter, “Spectral intensities,” in: R. Huddlestown and S. Leonard (eds.),Plasma Diagnostics, Academic Press, New York (1965).Google Scholar
  11. 11.
    Yu. P. Raizer,The Physics of Gas Discharge [in Russian], Nauka, Moscow (1988).Google Scholar
  12. 12.
    V. Finkelnburg and G. Maecker,Electric Arcs and Thermal Plasmas [in Russian], Inostrannaya Literatura, Moscow (1961).Google Scholar
  13. 13.
    Ya. B. Zel'dovich and Yu. P. Raizer,The Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).Google Scholar
  14. 14.
    Yu. S. Protasov (ed.),Radiative Plasma Dynamics, Vol. 1 [in Russian], Énergoatomizdat, Moscow (1991).Google Scholar
  15. 15.
    N. N. Kalitkin, L. V. Kuz'mina, and V. S. Rogov,Tables of Thermodynamic Functions and Transport Coefficients in a Plasma [in Russian], Institute for Applied Mathematics, Moscow (1972).Google Scholar
  16. 16.
    I. V. Avilova, L. M. Biberman, V. S. Vorob'ev, et al.,Optical Properties of Hot Air [in Russian], Nauka, Moscow (1970).Google Scholar
  17. 17.
    A. N. Zaidel', V. K. Prokof'ev, S. M. Raisky, et al.,Tables of Spectral Lines [in Russian], Nauka, Moscow (1977).Google Scholar
  18. 18.
    O. M. Belotserkovskii and Yu. M. Davydov,Method of Large Particles in Gas Dynamics [in Russian], Nauka, Moscow (1982).Google Scholar
  19. 19.
    V. A. Burtsev, N. V. Kalinin, and A. V. Luginskii,Electric Explosion of Conductors and its Application in Electrophysical Facilities [in Russian], Énergoatomizdat, Moscow (1990).Google Scholar
  20. 20.
    A. I. Pavlovskii, G. V. Karpov, G. G. Katraev, et al.,Zh. Tekh. Fiz.,45, 286 (1975).Google Scholar
  21. 21.
    F. Chazaud, M. L. Sentis, H. C. Le, et al.,Appl. Phys. Lett.,65, 1626 (1994).Google Scholar
  22. 22.
    S. V. Mit'ko, A. V. Paramonov, F. A. van Goor, et al.,Proceedings of the Twelfth European Sectional Conference on the Atomic and Molecular Physics of Ionized Gases ESCAMPIG-94, Vol. 18E, Noordwijkerhout, The Netherlands (1994), p. 264.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. V. Mit'ko
    • 1
  • V. N. Ochkin
    • 1
  1. 1.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations