Hyperfine Interactions

, Volume 96, Issue 1, pp 91–98 | Cite as

Mössbauer and infrared studies of the Cu-Cr ferrites

  • M. A. Amer
  • M. A. Ahmed
  • M. K. El-Nimr
  • M. A. Mostafa
Article

Abstract

Ferrites of the system CuCrxFe2−xO4, wherex=0,0.2,0.4, 0.6 and 0.8, have been studied by Mössbauer and IR absorption spectra. Mössbauer spectra were recorded at room temperature. The spectra of all samples showed two well defined Zeeman patterns corresponding to A and B sites. The effect of the variation of chromium substitution on the various hyperfine interactions has been discussed. The cationic distribution makes clear that all Cr3+ ions occupy octahedral sites. The IR spectra in the range 200–4000 cm−1 showed the presence of four bands. The high and low frequency bandsv1 andv2 belong to the tetrahedral and octahedral sites, respectively. Small bandsv3 andv4are observed around v2 and are assigned to the octahedral divalent metal-oxygen ion complexes and the lattice vibrations of the system, respectively.

Keywords

Thin Film Chromium Ferrite Absorption Spectrum Octahedral Site 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.J. Evans, S.S. Hafner and G.M. Kalvius, Phys. Lett. 23 (1966) 42.Google Scholar
  2. [2]
    B.J. Evans and S. Hafner, J. Appl. Phys. 39 (1968) 694.Google Scholar
  3. [3]
    G. Wyckoff,Crystal Structures, Vol. 3 (Interscience, New York, 1965) p. 86.Google Scholar
  4. [4]
    E. Prince, Acta Cryst. 10 (1957) 554.Google Scholar
  5. [5]
    H.N. Ok, K.S. Back and E.J. Choi, Phys. Rev. B 40 (1989) 84.Google Scholar
  6. [6]
    H.N. Ok and Y.K. Kim, Phys. Rev. B 36 (1987) 5120.Google Scholar
  7. [7]
    H.N. Ok, K.S. Back, H.S. Lee and S.C. Kim, Phys. Rev. B 41 (1990) 62.Google Scholar
  8. [8]
    H.N. Ok, K.S. Back and J.C. Sur, Solid State Commun. 60 (1980) 955.Google Scholar
  9. [9]
    G. Haacke and A.J. Nozik, Solid State Commun. 6 (1968) 363.Google Scholar
  10. [10]
    M.R. Spender and A.H. Morrish, Can. J. Phys. 50 (1972) 1125.Google Scholar
  11. [11]
    B.J. Evans and S.S. Hafner, Phys. Chem. Solids 29 (1969) 625.Google Scholar
  12. [12]
    R.C. Romeijn, Philips Rep. 8 (1953) 321.Google Scholar
  13. [13]
    D.S. Meclure, J. Phys. Chem. Solids 3 (1957) 311.Google Scholar
  14. [14]
    M. Jancki, J. Pietrzak, A. Porebska and J. Suwalski, Phys. Stat. Sol. A 72 (1982) 92.Google Scholar
  15. [15]
    R.E. Watson and A.J. Freeman, Phys. Rev. 123 (1961) 2027.Google Scholar
  16. [16]
    L. Néel, Ann. Phys. 3 (1948) 137.Google Scholar
  17. [17]
    L.K. Leung, B.J. Evans and A.H. Morrish, Phys. Rev. B 8 (1973) 29.Google Scholar
  18. [18]
    R.D. Waldron, Phys. Rev. 99 (1955) 1727.Google Scholar
  19. [19]
    S.T. Hafner, Z. Krist. 115 (1961) 33.Google Scholar
  20. [20]
    P. Tarte, Spectrochim. Acta 19 (1962) 49.Google Scholar
  21. [21]
    J. Preudhomme and P. Tarte, Spectrochim. Acta 27 A (1971) 961, 1817.Google Scholar
  22. [22]
    O.S. Josyulu and J. Sobhanadri, Phys. Stat. Sol. (a) 65 (1981) 479.Google Scholar
  23. [23]
    W.B. White and B.A. De Angelis, Spectrochim. Acta 23 A (1967) 985.Google Scholar
  24. [24]
    V.R.K. Murthy, S. Chitra Sankar, K.V. Reddy and J. Sobhanadri, Indian J. Pure Appl. Phys. 16 (1978) 79.Google Scholar
  25. [25]
    V.A. Potakova, N.D. Zverv and V.P. Romanov, Phys. Stat. Sol. (a) 12 (1972) 623.Google Scholar
  26. [26]
    S. Mochizuki and R. Ruppin, J. Phys. Condens. Matter. 3 (1991) 10037.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • M. A. Amer
    • 1
  • M. A. Ahmed
    • 1
  • M. K. El-Nimr
    • 1
  • M. A. Mostafa
    • 2
  1. 1.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Faculty of EducationAlexandria UniversityAlexandriaEgypt

Personalised recommendations