Advertisement

Mathematical Geology

, Volume 28, Issue 7, pp 923–936 | Cite as

Fast sequential indicator simulation: Beyond reproduction of indicator variograms

  • Jinchi Chu
Article

Abstract

Sequential Indicator Simulation (SIS), although widely used, is relatively slow, and requires tedious inference of a large number of indicator variogram models. SIS is designed only to estimate class proportions and to reproduce indicator variogram models; the statistics of the continuous attribute being simulated,z-histogram and variogram, may be poorly reproduced. Several implementations of the SIS algorithm are proposed resulting in better reproduction of statistics yet with better CPU performance.

Key words

sequential indicator simulation partial ccdf determination variogram interpolation Berea dataset 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, F., 1987, Stochastic imaging of spatial distributions using hard and soft information: unpubl. masters thesis, Stanford Univ., 169 p.Google Scholar
  2. Deutsch, C. V., 1992, Annealing techniques applied to reservoir modelling and the integration of geological and engineering (well test) data: unpubl. doctoral dissertation. Stanford Univ., 306 p.Google Scholar
  3. Deutsch, C. V., and Journel, A. G., 1992, GSLIB: Geostatistical Software Library and user's guide: Oxford Univ. Press, Oxford, 340 p.Google Scholar
  4. Geman, S., and Geman, D., 1984, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-. v. 6, no. 6. p. 721–724.Google Scholar
  5. Giordano, R., Salter, S., and Mohanty, K., 1985. The effects of permeability variations on flow in porous media: SPE Paper Number 14365, preprint.Google Scholar
  6. Gomez-Hernańdez, J., 1990, A stochastic approach to the simulation of block conductivity fields conditioned upon data measured at a smaller scale: unpubl. doctoral disseration, Stanford Univ., 351 p.Google Scholar
  7. Johnson, M., 1987, Multivariate statistical simulation: John Wiley & Sons, New York, 230 p.Google Scholar
  8. Journel, A. G., 1989, Fundamentals of geostatistics in five lessons: Intern. Geol. Congress (Washington, D.C.), Short Course in Geology, v. 8, Am. Geophys. Union. 40 p.Google Scholar
  9. Journel, A. G., 1993, Geostatistics: roadblocks and challenges,in Soares, A., ed., Geostatistics Troia 1992: Kluwer Acad. Publ., Dordrecht, The Netherlands, p. 213–224.Google Scholar
  10. Journel, A. G., and F. Alabert, 1989. Non-gaussian data expansion in the earth sciences: Terra Nova, v. 1, no. 2, p. 123–134.Google Scholar
  11. Press, W. H., Flannery, B., Teukolsky, S., and Vetterling, W., 1986, Numerical recipes: Cambridge Univ. Press, New York, 994 p.Google Scholar
  12. Ripley, B. D., 1987, Stochastic simulation: John Wiley & Sons, New York, 237 p.Google Scholar
  13. Srivastava, R., 1992, Iterative methods for spatial simulation: Stanford Center for Reservoir Forecasting, Rept. 5, 24 p.Google Scholar

Copyright information

© International Association for Mathematical Geology 1996

Authors and Affiliations

  • Jinchi Chu
    • 1
  1. 1.ARCO Exploration and Production TechnologyPlano

Personalised recommendations