Advertisement

Mathematical Geology

, Volume 28, Issue 7, pp 881–893 | Cite as

3-D geometric description of fractured reservoirs

  • Emmanuel Gringarten
Article

Abstract

Traditional stochastic modeling of fracture networks usually failed because it required unaccessible statistics and may not be able to honor available local data. This paper presents an algorithm for the 3D geometric simulation of fractured reservoirs. It is based on geological rules of fracture propagation and interaction. It is part of a methodology which aims at integrating diverse data about the fracture system in the subsurface. This information can come from well cores and logs, analog outcrops, geomechanical stress studies, seismic surveys; it may be quantitative or qualitative, and have different degrees of reliability.

Key words

fracture networks stochastic simulation data integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baecher, G. B., Lanney, N. S., and Einstein, H. H., 1977, Statistical descriptions of rock properties and sampling,in Proc. 19th U.S. Symposium on Rock Mechanics: American Institute of Mining, Metallurgical and Petroleum Engineers, New York, p. 56–65.Google Scholar
  2. Barton, C. C., Hsieh, P. A., and others, 1989, Physical and hydrologie-flow properties of fractures: Am. Geophys. Union. Field Trip 28th Intern. Geol. Congress. 36 p.Google Scholar
  3. Chiles, J. P., and de Marsily, G., 1993, Models of fracture systems,in Bear, J., Tsang, C.-F., and deMarsily, G., eds., Flow and contaminant transport in fractured rock: Academic Press, San Diego, California, p. 169–236.Google Scholar
  4. Deutsch, C. V., and Journel, A. G., 1992, GSLIB: Geostatistical Software Library and user's guide: Oxford Univ. Press, Oxford, 340 p.Google Scholar
  5. Gringarten, E. J., 1994. Simulation of fracture network: unpubl. masters thesis, Stanford University, 22 p.Google Scholar
  6. Guardiano, F. B., and Srivastava, R. M., 1993, Multivariate geostatisties: beyond bivariate moments,in Soares, A., ed. Geostatistics Troia 1992, Vol. 1: Kluwer Acad. Publ., Dordrecht, The Netherlands, p. 133–144.Google Scholar
  7. Long, J. C., 1983, Investigation of equivalent porous medium permeability in networks of discontinuous fracture: unpubl. doctoral dissertation. Univ. California Berkeley, 277 p.Google Scholar
  8. Long, J. C., and Billaux, D. M., 1987, From field data to fracture network modeling: an example incorporating spatial structure: Water Resources Res., v. 23, no. 7, p. 1201–1216.Google Scholar
  9. Maerten, L., 1995, Methodology to estimate the small-scale fracture distributions in reservoirs using outcrop mapping and mechnical modeling: Stanford Rock Fracture Project Rept., vol. 6, p. N1-N11.Google Scholar
  10. Pollard, D. D., and Aydin, A., 1988, Progress in understanding jointing over the past century: Geol. Soc. America Bull., v. 100, no. 8, p. 1181–1204.Google Scholar
  11. Renshaw, C. E., 1993, Modeling fluid migration through physically-based fracture networks: unpubl. doctoral dissertation. Stanford Univ., 202 p.Google Scholar
  12. Rives, T., 1992, Mécanismes de formation des diaclases dans les roches sédimantaires, unpubl. doctoral dissertation, Université Montpellier II, 152 p.Google Scholar
  13. Srivastava, R. M., 1994, An annealing procedure for honouring change of support statistics in conditional simulation,in Dimitrakopoulos, R., ed., Geostatistics for the next century: Kluwer Acad. Publ., Dordrecht, The Netherlands, p. 277–290.Google Scholar
  14. Teng, L., and C. Mavko, 1995, Fracture effects on seismic wave amplitude (abst.): EOS. Trans. Am. Geophys. Union, v. 76, no. 46, p. 600.Google Scholar
  15. Wang, L., 1996, Modeling complex reservoir geometries with multiple-point statistics: Math. Geology, v. 28, no. 7, this issue.Google Scholar
  16. Xu, L., and Journel, A., 1996, Conditional curvilinear stochastic simulation using pixel-based algorithms: Math. Geology, v. 28, no. 7, this issue.Google Scholar

Copyright information

© International Association for Mathematical Geology 1996

Authors and Affiliations

  • Emmanuel Gringarten
    • 1
  1. 1.Stanford Center for Reservoir ForecastingStanford UniversityStanford

Personalised recommendations