Advertisement

Theoretical and Mathematical Physics

, Volume 103, Issue 3, pp 668–680 | Cite as

The dressing techniques for intermediate hierarchies

  • P. Holod
  • S. Pakuliak
Article

Abstract

We consider the generalized AKNS systems, introduced and discussed recently in [1]. We have shown that the dressing techniques both in matrix pseudo-differential operators and formal series with respect to the spectral parameter can be developed for these hierarchies.

Keywords

Spectral Parameter Formal Series AKNS System Generalize AKNS Intermediate Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. de Groot, T. J. Hollowood, and J. L. Miramontes,Commun. Math. Phys.,145, 57–84 (1992); N. J. Burrough, M. F. de Groot, T. J. Hollowood, and J. L. Miramontes,Commun. Math. Phys.,153, 187–215 (1993).Google Scholar
  2. 2.
    V. G. Kac and D. H. Peterson, “112 Construction of the Loop Group ofE 8,” in:Proceedings of Symposium on Anomalies, Geometry, and Topology, World Scientific, Singapore (1985), pp. 276–298.Google Scholar
  3. 3.
    V. G. Drinfeld and V. V. Sokolov,J. Sov. Math.,30, 1975–2036 (1984).Google Scholar
  4. 4.
    A. Digasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov, and P. Santini,Commun. Math. Phys.,141, 133–151 (1991);J. Math. Phys.,33, No. 11, 3783–3793 (1992).Google Scholar
  5. 5.
    F. Delduc and L. Fehér,Conjugacy classes in the Weyl group admitting a regular eigenvector and integrable hierarchies, Preprint ENSLAPP-L-493/94.Google Scholar
  6. 6.
    F. ten Kroode and J. van de Leur,Commun. Math. Phys.,137, 67–107 (1991).Google Scholar
  7. 7.
    L. Fehér, J. Harnad, and I. Marshal,Commun. Math. Phys.,154, 181–214 (1993).Google Scholar
  8. 8.
    M. A. Semenov-Tian-Shansky, “Dressing transformation and Poisson Lie group action,”Publ. RIMS Kyoto Univ.,21, 1237 (1985).Google Scholar
  9. 9.
    D. Lebedev and S. Pakuliak,Comments on the Drinfeld-Sokolov Hamiltonian reduction. 1.gl(n) Case, Genova Univ. Preprint GEF-Th-9/1990.Google Scholar
  10. 10.
    I. M. Gelfand and L. A. Dickey, Preprint Inst. Appl. Math. (1978).Google Scholar
  11. 11.
    I. M. Gelfand and L. A. Dickey,Funct. Anal. Appl.,11, 93–104 (1977).Google Scholar
  12. 12.
    Yu. I. Manin,J. Sov. Math.,11, 1–122 (1979).Google Scholar
  13. 13.
    G. Wilson,Math. Proc. Cambridge. Philos. Soc.,86, 131–143 (1979);Q. J. Math. Oxford,32, 491–512 (1981).Google Scholar
  14. 14.
    D. Lebedev and S. Pakuliak,Phys. Lett. A,160, 173–178 (1991).Google Scholar
  15. 15.
    A. Newell,Solitons in Mathematics and Physics, CBMS 48 SIAM, Philadelphia (1985).Google Scholar
  16. 16.
    V. G. Kac and J. W. van de Leur, “Then-component KP hierarchy and representation theory,” in:Important Developments in Soliton Theory, Springer Series in Nonlinear Dynamics (A. S. Fokas and V. E. Zakharov, eds.) (1993), pp. 302–343.Google Scholar
  17. 17.
    L. A. Dickey,Soliton Equations and Hamiltonian Systems, World Scientific, Singapore (1991).Google Scholar
  18. 18.
    L. A. Dickey,J. Math. Phys.,32, No. 11, 2996–3002 (1991).Google Scholar
  19. 19.
    M. J. Bergvelt and A. P. E. ten Kroode,J. Math. Phys.,29, No. 6, 1308–1320 (1988).Google Scholar
  20. 20.
    C. R. Fernández-Pousa, M. V. Gallas, J. L. Miramontes, and J. S. Guillén,W-Algebras from soliton equations and Heisenberg subalgebras, Preprint Univ. of Santiago, US-FT/13-94, hep-th/9409016.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • P. Holod
    • 1
    • 2
  • S. Pakuliak
    • 1
    • 2
  1. 1.Institute for Theoretical PhysicsKievUkraine
  2. 2.Departamento de Física TeóricaFacultad de Ciencias Universidad de ZaragozaZaragozaSpain

Personalised recommendations