Theoretical and Mathematical Physics

, Volume 103, Issue 3, pp 660–667 | Cite as

A duality-like transformation in WZNW models inspired by dual riemannian globally symmetric spaces

  • A. M. Ghezelbash
Article

Abstract

We investigate transformations on the group manifold element and gauged fields on two different kinds of gauged WZNW models and thus obtain a duality-like transformation between chiral- and vector-gauged WZNW models with null gauged subgroups that exactly converts the chiral-gauged WZNW action to vector-gauged WZNW action and vice versa. These duality-like transformations correspond to the duality in Riemannian globally symmetric spaces.

Keywords

Manifold Symmetric Space Group Manifold WZNW Model Manifold Element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten,Phys. Rev.,D44, 314 (1991).Google Scholar
  2. 2.
    X. de la Ossa and F. Quevedo,Nucl. Phys.,B403, 377 (1993); K. Sfetsos,Gauged WZW models and non-Abelian duality, Preprints THU-94/01, hep-th/9402031.Google Scholar
  3. 3.
    E. B. Kiritsis,Mod. Phys. Lett.,A6, 2871 (1991); E. Kiritsis,Nucl. Phys.,B405, 109 (1993); A. Giveon and E. Kiritsis,Nucl. Phys.,B411, 487 (1994).Google Scholar
  4. 4.
    E. Álvarez, L. Álvarez-Gaumé, J. L. F. Barbon, and Y. Lozano,Nucl. Phys.,B415, 71 (1994); E. Álvarez, L. Álvarez-Gaumé, and Y. Lozano,On non-Abelian duality, Preprint CERN-TH-7204/94.Google Scholar
  5. 5.
    M. Alimohammadi, F. Ardalan, and H. Arfaei,Gauging SL(2, R) and SL(2, R) × U(1) by their nilpotent subgroups, BONN-HE-93-12, SUTDP-93/72/3, IPM-93-007, hep-th/9304024, to appear in Int. J. Mod. Phys.Google Scholar
  6. 6.
    A. Kumar and S. Mahapatra,Exact duality and nilpotent gauging, Preprints IP/BBSR/94-02, IMSC/94-02.Google Scholar
  7. 7.
    F. Ardalan and A. M. Ghezelbash, Preprint IPM/73/94.Google Scholar
  8. 8.
    E. Witten,Commun. Math. Phys.,92, 455 (1984).Google Scholar
  9. 9.
    K. Gawedzki and A. Kupiainen,Phys. Lett.,B215, 119 (1988).Google Scholar
  10. 10.
    A. M. Polyakov and P. B. Wiegman,Phys. Lett.,B141, 223 (1984).Google Scholar
  11. 11.
    K. Sfetsos,Gauging a non-semi-simple WZW model, Preprints THU-93/30, hep-th/9311010.Google Scholar
  12. 12.
    S-W. Chung and S. H. H. Tye,Phys. Rev.,D47, 4546 (1993).Google Scholar
  13. 13.
    K. Sfetsos and A. A. Tseytlin,Chiral gauged WZNW models and heterotic string backgrounds, Preprints CERN-TH.6962/93, USC-93/HEP-2, Imperial/TP/92-93/65, hep-th/9308108.Google Scholar
  14. 14.
    K. Sfetsos,Exact action and exact geometry in chiral gauged WZNW models, Preprints USC-93/HEP-S1, hep-th/9305074.Google Scholar
  15. 15.
    F. Ardalan,Low-Dimensional and Quantum Field Theory, Plenum Press, New York (1993).Google Scholar
  16. 16.
    C. Klimčík and A. A. Tseytlin,Exact four dimensional string solutions and toda-like sigma models from null-gauged WZNW theories, Preprints IMPERIAL/TP/93-94/17, PRA-HEP 94/1, hep-th/9402120.Google Scholar
  17. 17.
    A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, and S. Shatashvili,Int. J. Mod. Phys.,A5, 2495 (1990).Google Scholar
  18. 18.
    G. G. Bauerle and E. A. de Kerf,Finite and Infinite Dimensional Lie Algebras and Applications in Physics, Elsevier-North Holland (1990).Google Scholar
  19. 19.
    R. Gilmore,Lie Groups, Lie Algebras and Some of Their Applications, Wiley-Interscience, New York (1978).Google Scholar
  20. 20.
    S. Helgason,Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York (1978).Google Scholar
  21. 21.
    R. Hermann,Lie Groups for Physicists, W. A. Benjamin, New York (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. M. Ghezelbash
    • 1
    • 2
  1. 1.Institute for Studies in Theoretical Physics and MathematicsTehranIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations