Mathematical Geology

, Volume 23, Issue 3, pp 305–324 | Cite as

Reversible Markov grain sequences in granite

  • W. E. Sharp
  • Kevin Severance
Articles

Abstract

A key feature of an ideal granite is the occurrence of grain sequences which are reversible Markov chains. This property was tested using a χ2 test on a 2 × 6 contingency table consisting of reversible grain pairs for microcline, plagioclase, quartz, and biotite, and on a 2 × 12 contingency table consisting of reversible grain triads. All 28 samples examined from the Pacolet Mills pluton, South Carolina, passed the χ2 test for grain pairs, and all but three of these passed the χ2 test for grain triads. The coefficients of the reversibility matrix were examined for statistical significance after normalization, using a logarithmic transformation. For all three phases of the Pacolet Mills pluton, the average coefficients were in the range 1.08–0.89. Elevated and depressed values of these coefficients suggested possible differences among the three phases of the granite in their crystallization paths.

Key words

Markov chains reversibility Pacolet Mills pluton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J., 1984, The Statistical Analysis of Geochemical Compositions: Math. Geol., v. 16, p. 531–564.Google Scholar
  2. Cressie, N., and Read, T. R. C., 1989, Pearson's χ2 and the Loglikelihood Ratio Statistic G2: A Comparative Review: International Statistical Review, v. 57, p. 19–43.Google Scholar
  3. Crow, E. L., Davis, F. A., and Maxfield, M. W., 1960,Statistics Manual: Dover, New York, 288 pp.Google Scholar
  4. Davis, J. C., 1986,Statistics and Data Analysis in Geology (2nd ed.): New York, Wiley, 646 p.Google Scholar
  5. Harbaugh, J. W., and Bonham-Carter, G., 1970,Computer Simulation in Geology: John Wiley, New York, 575 pp.Google Scholar
  6. Kelly, F. P., 1979, Reversibility and Stochastic Networks:John Wiley & Sons, Chichester, 230 pp.Google Scholar
  7. Kemeny, J. G., and Snell, J. L., 1960,Finite Markov Chains Van Nostrand, New York, 210 p.Google Scholar
  8. Kemeny, J. G., Snell, J. L., and Thompson, G. L., 1974,Introduction to Finite Mathematics Prentice-Hall, Englewood Cliffs, New Jersey, 484 pp.Google Scholar
  9. Laniz, R. V., Stevens, R. E., and Norman, M. B., 1964, Staining of Plagioclase Feldspar and Other Minerals with F. D. and C. Red no. 2: U.S. Geological Survey, Prof. Paper, 501-B, p. B152-B153.Google Scholar
  10. Mittwede, S. K., and Fullagar, P. D., 1987, Petrology and Geochronology of the Pacolet Monzogranite, Northwestern South Carolina: Petrogenetic Implications: Geological Society of America, Abstracts with programs, v. 19, p. 118.Google Scholar
  11. Mittwede, S. K., 1988, Ultramafites, Melanges, and Stitching Granites as Suture Markers in the Central Piedmont of the Southern Appalachians: Jour. Geol., v. 96, p. 693–707.Google Scholar
  12. Richman, D., and Sharp, W. E., 1990, A Method for Determining the Reversibility of a Markov Sequence: Math. Geol., v. 22, p. 749–761.Google Scholar
  13. Vistelius, A. B., 1966, Genesis of the Mt. Belaya Granodiorite, Kamchatka (an Experiment in Stochastic Modeling): Trans. Acad. Sci. USSR, Earth Science Sections, v. 167, p. 48–50 [v. 167, p. 1115–1118, 1966].Google Scholar
  14. Vistelius, A. B., 1967a, A Stochastic Model for the Crystallization of Alaskite and Its Corresponding Transition Probabilities: Trans. Acad. Sci. USSR, Earth Science Sections, v. 170, p. 82–85 [v. 170, p. 653–656, 1967].Google Scholar
  15. Vistelius, A. B., 1967b, Crystallization of Alaskite from the Karakul'dzur river (Central Tien Shan): Trans. Acad. Sci. USSR, Earth Science Sections, v. 172, p. 17–19 [v. 172, p. 165–167, 1967].Google Scholar
  16. Vistelius, A. B., 1967c, Courses of Crystallization and Secondary Minerals in Certain Granites of the Kmamka District (Maritime region): Trans. Acad. Sci. USSR, Earth Science Sections, v. 177, p. 114–116 [v. 177, p. 1411–1414, 1967].Google Scholar
  17. Vistelius, A. B., 1970, The Shap Granite, Westmorland, England: Trans. Acad. Sci. USSR, Earth Science Sections, v. 187, p. 20–22 [v. 187, p. 391–394, 1969].Google Scholar
  18. Vistelius, A. B., 1972, Ideal Granite and Its Properties. I: The Stochastic Model: Math. Geol., v. 4, p. 89–102.Google Scholar
  19. Vistelius, A. B., 1987, Ideal Granites and Models of their Metasomatic Transformations: Theory, Experience, and Current Problems: Math. Geol., v. 19, p. 589–612.Google Scholar
  20. Vistelius, A. B., and Faas, A. V., 1973, Statistical Identification of Ideal Magmatic Granite: Trans. Acad. Sci. USSR, Earth Science Sections, v. 203, p. 160–162 [v. 203, p. 670–673, 1972].Google Scholar
  21. Vistelius, A. B., and Romanova, M. A., 1977, Model of Degenerate Case of Crystallization of Ideal Granite: Trans. Acad. Sci. USSR, Earth Science Sections, v. 228, p. 136–139 [v. 228, p. 170–173, 1976].Google Scholar
  22. Vistelius, A. B., and Harbaugh, J. W., 1980, Granitic Rocks of the Yosemite Valley and the Ideal Granite Model: Math. Geol., v. 12, p. 1–24.Google Scholar
  23. Vistelius, A. B., and Faas, A. V., 1986, Position of Secondary Albite and Quartz Between Primary Grains of Igenous Granite: Trans. Acad. Sci. USSR, Earth Science Sections, v. 279, p. 184–186 [v. 279, p. 1461–1464, 1984].Google Scholar
  24. Vistelius, A. B., Agterberg, J. P., Divi, S. R., and Hogarth, D. D., 1983, A Stochastic Model for the Crystallization and Textural Analysis of a Fine-Grained Granite Stock near Meech Lake, Gatineau Park: Quebec. Can. Geol. Sur. Paper 81-21: 1–62.Google Scholar

Copyright information

© International Association for Mathematical Geology 1991

Authors and Affiliations

  • W. E. Sharp
    • 1
  • Kevin Severance
    • 2
  1. 1.Department of Geological SciencesUniversity of South CarolinaColumbia
  2. 2.Department of PhysicsUniversity of South CarolinaColumbia

Personalised recommendations