Advertisement

Hyperfine Interactions

, Volume 18, Issue 1–4, pp 581–584 | Cite as

Electronic structure of positive muon in silicon

  • H. Katayama-Yoshida
  • K. Shindo
Muonium-Like States in Solids

Abstract

The spin polarized electronic structure around a positive muonμ+ at the tetrahedral interstitial site of silicon is calculated by use of the LCAO-Green's function method and the local spin density functional formalism. The bonding hyper deep impurity state below the valence band and the antibonding deep one in the gap caused by the strong sp hybridization in the majority spin band give the most large contribution to the hyperfine coupling constant ofμ+. The reduction of the hyperfine coupling constant,A, experienced byμ+ at absolute zero is calculated to be 0.406 in satisfactory agreement with the experimental value of 0.405 ± 0.026 or 0.450 ± 0.020.

Keywords

Valence Band Function Method Spin Density Satisfactory Agreement Interstitial Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.G. Andrianov, E.V. Minaichev, G.G. Myasishcheva, Yu.V. Obukhov, V.S. Roganov, G.L. Savel'ev, V.G. Firsov, and V.I. Fistul, Zh. Eksp. Teor. Fiz.58 (1970) 1896 [Sov. Phys.-JETP31 (1970) 1019]Google Scholar
  2. [2]
    J.H. Brewer, K.M. Crowe, F.N. Gygax, R.F. Johnson, B.D. Patterson, D.G. Fleming, and A. Schenck, Phys. Rev. Lett.31 (1973) 143Google Scholar
  3. [3]
    E. Holzschuh, W. Kündig, P.F. Meier, B.D. Patterson, J.P.F. Sellschop, M.C. Stremmet, and H. Appel, Phys. Rev.A25 (1982) 1272Google Scholar
  4. [4]
    J.S.-Y. Wang and C. Kittel, Phys. Rev.B7 (1973) 713Google Scholar
  5. [5]
    S.T. Pantelides, Hyperfine Interactions6 (1979) 145Google Scholar
  6. [6]
    M. Manninen and P.F. Meier, Phys. Rev.B26 (1982) 6690Google Scholar
  7. [7]
    J. Bernholc, N.O. Lipari, and S.T. Pantelides, Phys. Rev.B21 (1980) 3545Google Scholar
  8. [8]
    G.A. Baraff, E.O. Kane, and M. Schlüter, Phys. Rev.B21 (1980) 5662Google Scholar
  9. [9]
    A. Zunger and U. Lindefelt, Phys. Rev.B26 (1982) 5989Google Scholar
  10. [10]
    H. Katayama-Yoshida and K. Shindo, Solid State Commun.44 (1982) 999Google Scholar
  11. [11]
    L. Hedin and B.I. Lundquist, J. Phys.C4 (1971) 2064Google Scholar
  12. [12]
    U. von Barth and L. Hedin, J. Phys.C5 (1972) 1629Google Scholar
  13. [13]
    D.J. Chadi, Phys. Rev.B16 (1977) 3572Google Scholar
  14. [14]
    A.R. Williams, P.J. Feibelman, and N.D. Lang, Phys. Rev.B26 (1982) 5433Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company, and Yamada Science Foundation 1984

Authors and Affiliations

  • H. Katayama-Yoshida
    • 1
  • K. Shindo
    • 2
  1. 1.Department of PhysicsTohoku UniversitySendaiJapan
  2. 2.College of Humanities and Social SciencesIwate University MoriokaJapan

Personalised recommendations