Skip to main content
Log in

Muonium in ice

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Muonium has been studied in single crystals of H2O and D2O. Two-frequency precession in low transverse fields and a single zero-field oscillation indicate a small anisotropy of axial symmetry in the muonium hyperfine interaction. The anisotropy is shown to be the cause of the hitherto unexplained temperature independent contribution to muonium spin relaxation in polycrystalline samples. Relaxation rates for 99 K–263 K are reported for muonium in a single crystal of H2O. Relaxation is attributed to electron-nuclear dipolar coupling of muonium to lattice protons, modulated by translational diffusion of muonium alongc-axis channels of the ice lattice. A simple model for H and Mu diffusion in ice is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Myasishcheva, Yu.V. Obukhov, V.S. Roganov, and V.G. Firsov, Zh. Eksperim. Teor. Fiz.53 (1967) 451 [English transl. Soviet Phys. JETP26 (1968) 298]

    Google Scholar 

  2. I.I. Gurevich, I.G. Ivanter, E.A. Meleshko, B.A. Nikol'skii, V.S. Roganov, V.I. Selivanov, V.P. Smilga, B.V. Sokolov, and V.D. Shestakov, Zh. Eksperim. Teor. Fiz.60 (1971) 471 [English transl. Soviet Phys. JETP33 (1971) 253]

    Google Scholar 

  3. I.I. Gurevich, E.A. Meleshko, I.A. Muratova, B.A. Nikol'skii, V.S. Roganov, and V.I. Selivanov. Zh. ETF Pis. Red.18 (1973) 608 [English transl. Soviet Phys. JETP Letters18 (1973) 357]

    Google Scholar 

  4. P.W. Percival, E. Roduner, and H. Fischer, Chem. Phys.32 (1978) 353

    Google Scholar 

  5. P.W. Percival, J.C. Brodovitch, K.E. Newman, and D.P. Spencer, Chem. Phys. Letters93 (1982) 366

    Google Scholar 

  6. G.E. Pake, J. Chem. Phys.16 (1948) 327

    Google Scholar 

  7. A. Schenck and K.M. Crowe, Phys. Rev. Lett.26 (1971) 57

    Google Scholar 

  8. B.D. Patterson, A. Hintermann, W. Kündig, P.F. Meier, F. Waldner, H. Graf, E. Recknagel, A. Weidinger, and Th. Wichert, Phys. Rev. Lett.40 (1978) 1347

    Google Scholar 

  9. J.H. Brewer, D.S. Beder, and D.P. Spencer, Phys. Rev. Lett.42 (1979) 808

    Google Scholar 

  10. J.H. Brewer, Hyperfine Interactions8 (1981) 375

    Google Scholar 

  11. E. Roduner, Chem. Phys. Lett.81 (1981) 191

    Google Scholar 

  12. F. Jona and P. Scherrer, Helv. Phys. Acta25 (1952) 35

    Google Scholar 

  13. L.H. Piette, R.C. Rempel, H.E. Weaver, and J.M. Flournoy, J. Chem. Phys.30 (1959) 1623

    Google Scholar 

  14. J.M. Flournoy, L.H. Baum, and S. Siegel, J. Chem. Phys.36 (1962) 2229

    Google Scholar 

  15. H. Shiraishi, H. Kadoi, Y. Katsumura, Y. Tabata, and K. Oshima, J. Phys. Chem.80 (1976) 2400

    Google Scholar 

  16. J.H. Brewer, D.P. Spencer, D.G. Fleming, and J.A.R. Coope, Hyperfine Interactions8 (1981) 405

    Google Scholar 

  17. P.V. Hobbs, Ice Physics (Clarendon Press, Oxford, 1974) p. 742

    Google Scholar 

  18. V.A. Benderskii, A.G. Krivenko, and A.N. Rukin, Khim. Vys. Energ.14 (1980) 400 [English transl. High Energy Chem.14 (1980) 303]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Natural Sciences and Engineering Research Council of Canada through an Intermediate Energy Physics Project Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Percival, P.W., Brodovitch, JC., Leung, SK. et al. Muonium in ice. Hyperfine Interact 18, 543–550 (1984). https://doi.org/10.1007/BF02064865

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02064865

Keywords

Navigation