Skip to main content
Log in

Electronic structure and hyperfine interaction of muonium in semi-conductors

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The Unrestricted Hartree-Fock self-consistent field cluster procedure is being utilized for first-principle investigations of the electronic structures and hyperfine interactions in normal and anomalous muonium states in semi-conductors. Our results for the total energy for the normal muonium state for a twenty-seven atom cluster in diamond, including the muonium and its neighboring atoms, show a minimum at the tetrahedral site and a maximum at the hexagonal site indicating that normal muonium is located in the tetrahedral region and avoids the hexagonal region. Using the calculated spin-density as a function of the position of muonium and carrying out averaging over the vibrational motion of the muon governed by the total energy curve obtained from our work, we have derived a muon hyperfine constant which is about 75% of that in free muonium, in good agreement with experiment. The natures of the total energy and spindensity curves permit us to draw conclusions regarding the origin of the observed trend in the hyperfine constants for normal muonium in diamond, silicon and germanium. The UHF cluster procedure is also applied to study a model of a muon in a positively charged environment for the anomalous muonium center in diamond. This model leads to a hyperfine interaction tensor with the observed feature of strong anisotropy but significantly weaker than experiment. The results obtained for this model indicate the importance for the anomalous muonium state with its relatively weak hyperfine interaction, of exchange polarization effects inherent in the UHF procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Holzschuh, S.E. Streicher, W. Kündig, P.F. Meier, B.D. Patterson, J.P.F. Sellschop, M.C. Stemmet, and H. Appel, Hyperfine Interactions9 (1981) 611; E. Holzschuh, W. Kündig, P.F. Meier, B.D. Patterson, J.P.F. Sellschop, M.C. Stemmet, and H. Appel, Phys. Rev.A25 (1982) 1272

    Google Scholar 

  2. J.H. Brewer, K.M. Crowe, F.N. Cygax, R.F. Johnson, B.D. Patterson, D.G. Fleming, and A. Schenk, Phys. Rev. Lett.31 (1973) 143

    Google Scholar 

  3. E. Holzschuh, H. Graf, E. Recknagel, A. Weidinger, T. Wichert, and P.F. Meier, Phys. Rev.B20 (1979) 4391

    Google Scholar 

  4. E. Holzschuhet al. (1982) Ref. [1].

    Google Scholar 

  5. B.D. Patterson, A. Hintermann, W. Kündig, P.F. Meier, F. Waldner, H. Graf, E. Recknagel, A. Weidinger, and T. Wichert, Phys. Rev. Lett.41 (1978) 1347

    Google Scholar 

  6. E. Holzschuhet al., Ref. [3]

    Google Scholar 

  7. N. Sahoo, S.K. Mishra, K.C. Mishra, A. Coker, T.P. Das, C.K. Mitra, L.C. Snyder, and A. Glodeanu, Phys. Rev. Lett.50 (1983) 913

    Google Scholar 

  8. J.S. Wang and C. Kittel, Rev.B7 (1973) 713

    Google Scholar 

  9. W.E. Pickett, M.L. Cohen and C. Kittel, Phys. Rev.B20 (1979) 5050

    Google Scholar 

  10. M. Manninen and P.F. Meier, Phys. Rev.B26 (1982) 6690

    Google Scholar 

  11. A. Coker, T. Lee, T.P. Das and A. Glodeanu, Hyperfine Interactions4 (1976) 821

    Google Scholar 

  12. J.G. Brewer et al., Ref. [2]; B.D. Patterson et al., Ref. [5].

    Google Scholar 

  13. T.L. Estle, Hyperfine Interactions8 (1981) 365

    Google Scholar 

  14. A. Coker, T. Lee, T.P. Das, and A. Glodeanu, Abstracts of Fifth International Conference on Hyperfine Interactions, Berlin (1980) paper D-15

  15. N. Sahoo, K.C. Mishra, and T.P. Das, unpublished work.

  16. J. Hermanson, Phys. Rev.150 (1966) 660

    Google Scholar 

  17. R. Hoffmann, J. Chem Phys.39 (1963) 1397

    Google Scholar 

  18. M. Zerner, M. Gouterman, and H. Kobayashi, Theor. Chim. Acta6 (1966) 363

    Google Scholar 

  19. A. Coker and T.P. Das, unpublished work

  20. S.T. Picraux and F.L. Vook, Phys. Rev.B18 (1978) 2066

    Google Scholar 

  21. G.T. Surratt and W.A. Goddard III, Phys. Rev.B18 (1978) 2831; J.C. Malvido and J.L. Whitten, Phys. Rev.B26 (1982) 4458

    Google Scholar 

  22. K.J. Duff and T.P. Das, Phys. Rev.B3 (1971) 192; C.M. Singal and T.P. Das, Phys. Rev.B16 (1977) 5068

    Google Scholar 

  23. See for instance, R.E. Watson, and A.J. Freeman, in: Hyperfine Interactions, ed. A.J. Freemand and R.B. Fraenkel Academic Press, New York, (1967); L. Tterlikkis, S.D. Mahanti, and T.P. Das, Phys. Rev.176 (1968) 10; N.C. Dutta, C. Matsubara, R.T. Pu, and T.P. Das, Phys. Rev.177 (1969) 33; M. Vajed-Samii, J. Andriessen, B.P. Das, S:N. Ray, and T. Lee, J. Phys.B15 (1982) 1379; J.E. Rodgers, T. Lee, D. Ikenberry, and T.P. Das, Phys. Rev.A7 (1973) 51; J.E. Rodgers and T.P. Das, Phys. Rev.A8 (1973) 724; S.D. Mahanti and T.P. Das, Phys. Rev.B3 (1971) 1599

    Google Scholar 

  24. R.E. Watson and A.J. Freeman, in Ref. [23]in:

    Google Scholar 

  25. J.S. Brinkley, R.A. Whiteside, R. Krishnan, R. Seeger, D.J. Defrees, H.S. Schlegel, S. Topiol. L.R. Kahn, and J.A. Pople, Gaussian-80, Anab initio Molecular Orbital Program, unpublished

  26. K.C. Mishra, C.K. Mitra, L.C. Snyder, and T.P. Das, to be published

  27. E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955)

    Google Scholar 

  28. D.M. Gruen, R. Varma, and R.B. Wright, J. Chem. Phys.64 (1976) 5000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, N., Mishra, S.K., Mishra, K.C. et al. Electronic structure and hyperfine interaction of muonium in semi-conductors. Hyperfine Interact 18, 525–541 (1984). https://doi.org/10.1007/BF02064864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02064864

Keywords

Navigation