Skip to main content
Log in

Electronic structure and magnetism of surfaces, interfaces and modulated structures (superlattices)

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Recent developments in the study of surfaces and interfaces of metals and of artificial materials such as bimetallic sandwiches and modulated structures are described. Key questions include the effects on magnetism of reduced dimensionality and the possibility of magnetically “dead” layers. These developments have stimulated an intensified theoretical effort to investigate and describe the electronic and magnetic structure of surfaces and interfaces. One notable success has been the development of a highly accurate full-potential all-electron method (the FLAPW method) for solving the local spin density equations self-consistently for a single slab geometry. We describe here this advanced state of ab initio calculations in determining the magnetic properties of transition metal surfaces such as those of the ferromagnetic metals Ni(001) and Fe(001) and the Ni/Cu(001) interface. For both clean Fe and Ni(001) we find an enhancement of the magnetic moments in the surface layer. The magnetism of surface and interface Ni layers on Cu(001) (no “dead” layers are found) is described and compared to the clean Ni(001) results. Finally, the role ofμSR experiments in answering some of the questions raised in these studies will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Freeman, J. Mag. Magn. Mat.15–18 (1980) 1070

    Google Scholar 

  2. M.B. Brodsky and A.J. Freeman, Phys. Rev. Lett.45, (1980) 133

    Google Scholar 

  3. J.E. Hilliard, in: Modulated Structures-1979, eds. J.M. Cowley, M.B. Salamon and B.J. Wuensch, AIP Conf. Proc. No. 53 (American Institute of Physics, New York, 1979); F.C. Frand and J.H. van der Merwe, Proc. Roy. Soc. London Ser.A 198 (1949) 205; R.W. Vook and C.T. Horng, Phil. Mag.33 (1976) 843

    Google Scholar 

  4. B.T. Thaler, J.B. Ketterson, and J.E. Hilliard, Phys. Rev. Lett.41 (1978) 336

    Google Scholar 

  5. M.B. Brodsky, J. Appl. Phys.52 (1981) 1665; M.B. Brodsky, P. Marikar, R.J. Friddle, L. Singer, and C.H. Sowers, Solid State Comm.42 (1982) 675

    Google Scholar 

  6. M.B. Brodsky, M. Magn. Mat.35 (1983) 99

    Google Scholar 

  7. L.N. Liebermann, D.R. Fredkin, and H.B. Shore, Phys. Rev. Lett.25 (1970) 232

    Google Scholar 

  8. G. Bergmann, Phys. Rev. Lett.41 (1978) 264

    Google Scholar 

  9. P. Fulde, A. Luther, and R.E. Watson, Phys. Rev.B8 (1973) 440

    Google Scholar 

  10. K. Levin, A. Liebsch, and K.H. Benneman, Phys. Rev.B7 (1973) 3066

    Google Scholar 

  11. C.S. Wang and A.J. Freeman, Phys. Rev.B21 (1980) 4585

    Google Scholar 

  12. O. Jepsen, J. Madsen, and O.K. Anderson, J. Magn. Magn. Mat.15–18 (1980) 867

    Google Scholar 

  13. C.S. Wang and A.J. Freeman, Phys. Rev.B24 (1981) 4364

    Google Scholar 

  14. E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, Phys. Rev.B24 (1981) 864

    Google Scholar 

  15. H. Krakauer, M. Posternak, and A.J. Freeman, Phys. Rev.B19 (1979) 1706

    Google Scholar 

  16. M. Posternak, H. Krakauer, A.J. Freeman, and D.D. Koelling, Phys. Rev.B21 (1980) 5601

    Google Scholar 

  17. H. Danan, A. Herr, and A.J.P. Meyer, J. Appl. Phys.39 (1968) 669

    Google Scholar 

  18. S. Ohnishi, A.J. Freeman, and M. Weinert, J. Magn. Magn. Mat.31–34 (1983) 889

    Google Scholar 

  19. U. von Barth and L. Hedin, J. Phys.C5 (1972) 1679

    Google Scholar 

  20. V.L. Moruzzi, J.F. Janak, and A.R. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978)

    Google Scholar 

  21. E. Wimmer, A.J. Freeman, and H. Krakauer, to be published

  22. B. Delley, A.J. Freeman, M. Weinert, and E. Wimmer, Phys. Rev.B (in press)

  23. A.J. Freeman, and M. Weinert, Bull. Amer. Phys. Soc.27 (1982) 280

    Google Scholar 

  24. J.E. Hillard, in Modulated Structures-1979, ed. J.M. Cowley et al., AIP Conference Proceedings No. 53 (American Institute of Physics, New York, 1979)

    Google Scholar 

  25. D.S. Wang, A.J. Freeman, and H. Krakauer, J. Appl. Phys.52 (1981) 2502; Bull. Amer. Phys. Soc.26 (1981) 355; Phys. Rev.B24 (1981) 1126

    Google Scholar 

  26. D.S. Wang, A.J. Freeman, and H. Krakauer, Phys. Rev.B26 (1982) 1340

    Google Scholar 

  27. A.J. Freeman, D.S. Wang, and H. Krakauer, J. Appl. Phys.53 (1982) 1977; Phys. Rev.B26 (1982) 1340

    Google Scholar 

  28. H. Krakauer and A.J. Freeman, Bull. Amer. Phys. Soc.26 (1981) 356

    Google Scholar 

  29. T. Jarlborg and A.J. Freeman, Phys. Rev. Lett.45 (1980) 653; T. Jarlborg and A.J. Freeman, J. Appl. Phys.52 (1981) 1622; A.J. Freeman, J-h. Xu, and T. Jarlborg, J. Magn. Magn. Mat.31–34 (1983) 909

    Google Scholar 

  30. E.M. Gyorgy, J.F. Dillon, Jr., D.B. McWhan, L.W. Rupp, Jr., L.R. Testardi, and P.J. Flanders, Phys. Rev. Lett.45 (1980) 57; G.P. Felcher, J.W. Cable, J.Q. Zheng, J.B. Ketterson, and J.E. Hilliard, J. Magn. Magn. Mat.21 (1980) L198; J.Q. Zheng, C.M. Falco, J.B. Ketterson, and I.K. Schuller, Appl. Phys. Lett.38 (1981) 424; E.M. Gyorgy, D.B. McWahn, J.F. Dillon, Jr., L.R. Walker, ad J.V. Waszczak, Phys. Rev.B25 (1982) 6739

    Google Scholar 

  31. See the report of Gyorgy et al. for a more complex discussion, E.M. Gyorgy, D.B. McWahn, J.F. Dillon, Jr., L.R. Walker, J.V. Waszczak, D.P. Musser, and R.H. Willens, J. Magn. Magn. Mat.31–34 (1983) 915

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, A.J., Jarlborg, T., Krakauer, H. et al. Electronic structure and magnetism of surfaces, interfaces and modulated structures (superlattices). Hyperfine Interact 18, 413–426 (1984). https://doi.org/10.1007/BF02064847

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02064847

Keywords

Navigation