Hyperfine Interactions

, Volume 89, Issue 1, pp 371–380 | Cite as

Trapped positrons for antihydrogen

  • G. Gabrielse
  • L. Haarsma
  • K. Abdullah
Invited Papers Session 10. Positronium and Antihydrogen


Positrons from a 12 mCi22Na source are slowed by a W(110) reflection moderator and then captured in a Penning trap, by damping their motion with a tuned circuit. Because of the stability of the Penning trap and the cryogenic ultra-high vacuum environment, we anticipate that positrons can be accumulated and stored indefinitely. A continuous loading rate of 0.14 e+/s is observed for 32 h in this initial demonstration. More than 1.6×104 positrons have thus been trapped and stored at 4 K, with improvements expected. The extremely high vacuum is required for compatibility with an existing antiproton trap, which has already held more than 105 antiprotons at 4 K, for producing antihydrogen at low temperatures. The extremely cold positrons in high vacuum may also prove to be useful for cooling highly stripped ions.


Reflection Thin Film High Vacuum Initial Demonstration Reflection Moderator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Gabrielse, S.L. Rolston, L. Haarsma and W. Kells, Phys. Lett. A 129 (1988) 38.Google Scholar
  2. [2]
    H.F. Hess, G.P. Kochanski, J.M. Doyle, N. Masuhara, D. Kleppner and T.J. Greytak, Phys. Rev. Lett. 59 (1987) 672.Google Scholar
  3. [3]
    G. Gabrielse, X. Fei, K. Helmerson, S.L. Rolston, R.L. Tjoelker, T.A. Trainor, H. Kalinowsky, J. Haas and W. Kells, Phys. Rev. Lett. 57 (1986) 2504.Google Scholar
  4. [4]
    G. Gabrielse, X. Fei, L.A. Orozco, R.L. Tjoelker, J. Haas, H. Kalinowsky, T.A. Trainor and W. Kells, Phys. Rev. Lett. 63 (1989) 1360.Google Scholar
  5. [5]
    G. Gabrielse, X. Fei, L.A. Orozco, R.L. Tjoelker, J. Haas, H. Kalinowsky, T.A. Trainor and W. Kells, Phys. Rev. Lett. 65 (1990) 1317.Google Scholar
  6. [6]
    S.L. Rolston and G. Gabrielse, Hyp. Int. 44 (1988) 233.Google Scholar
  7. [7]
    P.B. Schwinberg, R.S. Van Dyck Jr. and H.G. Dehmelt, Phys. Lett. A 81 (1981) 119.Google Scholar
  8. [8]
    P.B. Schwinberg, PhD Thesis, University of Washington, USA (1979).Google Scholar
  9. [9]
    C.M. Surko, M. Leventhal and A. Passner, Phys. Rev. Lett. 62 (1989) 901; T.J. Murphy and C.M. Surko, J. Phys. B 23 (1990) L727.Google Scholar
  10. [10]
    R.S. Conti, B. Ghaffari and T.D. Steiger, Hyp. Int. 76 (1993) 127.Google Scholar
  11. [11]
    G. Gabrielse and B. Brown, in:The Hydrogen Atom, eds. G.F. Bassani, M. Ingscio and T.W. Hänsch (Springer, Berlin, 1989) p. 196.Google Scholar
  12. [12]
    L. Haarsma, K. Abdullah and G. Gabrielse, Hyp. Int. 76 (1993) 143.Google Scholar
  13. [13]
    D.A. Fischer, PhD Thesis, State University of New York at Stony Brook, USA (1984); D.A. Fischer, K.G. Lynn and D.W. Gidley, Phys. Rev. B 33 (1986) 4479.Google Scholar
  14. [14]
    B.L. Brown, W.S. Crane and A.P. Mills Jr., Appl. Phys. Lett. 48 (1986) 739.Google Scholar
  15. [15]
    P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. 60 (1988) 701.Google Scholar
  16. [16]
    L.S. Brown and G. Gabrielse, Rev. Mod. Phys. 58(1986)233.Google Scholar
  17. [17]
    H.G. Dehmelt and F.L. Walls, Phys. Rev. Lett. 21 (1968) 127; D.J. Wineland and H.G. Dehmelt, J. Appl. Phys. 46 (1975) 919.Google Scholar
  18. [18]
    G. Gabrielse, Phys. Rev. A 27 (1983) 2277.Google Scholar
  19. [19]
    D.J. Wineland and H.G. Dehmelt, Int. J. Mass Spectrom. Ion Phys. 16 (1975) 338; R.S. Van Dyck Jr., P.B. Schwinberg and H.G. Dehmelt, in:New Frontiers in High Energy Physics, eds. B. Kursunoglu, A. Perimutter and L. Scott (Plenum Press, New York, 1978).Google Scholar
  20. [20]
    J.N. Tan, PhD Thesis, Harvard University, USA (1992).Google Scholar
  21. [21]
    W. Quint, R. Kaiser, D. Hall and G. Gabrielse, Hyp. Int. 76 (1993) 181.Google Scholar
  22. [22]
    D.R. Bates and A. Dalgarno,Atomic and Molecular Processes (Academic Press, New York, 1962) p. 245.Google Scholar
  23. [23]
    D.R. Bates, A.E. Kingston and R.W.P. McWhirter, Proc. Roy. Soc. A 267 (1962) 297; J. Stevefelt, J. Boulmer and J.F. Delpech, Phys. Rev. A12 (1975) 1246.Google Scholar
  24. [24]
    M.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3 (1991) 1279.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • G. Gabrielse
    • 1
  • L. Haarsma
    • 1
  • K. Abdullah
    • 1
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations