Journal of Chemical Ecology

, Volume 20, Issue 2, pp 255–279 | Cite as

Spatial distribution of odors in simulated benthic boundary layer flows

  • Paul A. Moore
  • Marc J. Weissburg
  • J. Michael Parrish
  • Richard K. Zimmer-Faust
  • Greg A. Gerhardt


Many animals orient to odor sources in aquatic habitats where different flows and substrates affect the hydrodynamics of benthic boundary layers. Since the dispersal of chemicals is due to the fluid mechanics of a particular environment, we quantified the changes in the fine structure of an odor plume under different hydrodynamic conditions in the benthic boundary layer of a laboratory flume. We sampled turbulent odor plumes at 10 Hz using a microchemical sensor (150 µm diameter) under two flow speeds: 3.8 and 14.4 cm/sec, and at 1, 8, 50 mm above the substrate. These distances above the substrate occur within different flow regions of the boundary layer and correlate with the location of crustacean chemosensory appendages within boundary layer flows. The high flow velocity exhibited a greater level of turbulence and had more discrete odor pulses than the low flow velocity. In general, odor signals showed a high level of temporal variation in fast flow at heights 1 and 8 mm above the substrate. In slow flow, temporal variation was maximal at 50 mm above the substrate, exhibiting more variance than the same height at the fast flow. These patterns of odor signals resulted in part from differences in the height above the substrate of the main axis of the odor plume at the two flow speeds. Our results imply that animals chemically orienting to an odor source will need to compensate for varying hydrodynamic properties of odor transport and dispersal. The method by which animals extract spatial information from odor plumes will need to account for changing flow conditions, or else it will not be equally efficient in extracting information about chemical spatial distributions.

Key Words

Odor plume chemical orientation chemoreception turbulence hydrodynamics electrochemistry benthic boundary layer flume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R.N. 1969. Electrochemistry at Solid Electrodes. Marcel Dekker, New York.Google Scholar
  2. Atema, J. 1985. Chemoreception in the sea: Adaptation of chemoreceptors and behavior to aquatic stimulus conditions.Soc. Exp. Biol. Symp. 39:387–423.Google Scholar
  3. Atema, J. 1988. Distribution of chemical stimuli, pp. 29–56,in J. Atema, A. N. Popper, R. R. Fay and W. N. Travolga (eds.). Sensory Biology of Aquatic Animals. Springer-Verlag, Berlin.Google Scholar
  4. Atema, J., Moore, P.A., Madin, L.P., andGerhardt, G.A. 1991. Subnose-I: electrochemical tracking of odor plumes at 900 m beneath the ocean surface.Mar. Ecol. Prog. Ser. 74:303–306.Google Scholar
  5. Aylor, D.E. 1976. Estimating peak concentrations of pheromones in the forest, pp. 177–188,in J.E. Anderson and M.K. Kaya (eds.). Perspectives in Forest Entomology. Academic Press, New York.Google Scholar
  6. Aylor, D.E., Parlange, J.-Y., andGranett, J. 1976. Turbulent dispersion of disparlure in the forest and male gypsy moth response.Environ. Entomol. 10:211–218.Google Scholar
  7. Baker, T.C., Willis, M.A., andPhelan, P.L. 1984. Optomotor anemotaxis polarizes self-steered zigazagging in flying moths.Physiol. Entomol. 9:365–376.Google Scholar
  8. Bell, W. J., andTobin, T.R. 1982. Chemo-orientation.Biol. Rev. 57:219–260.Google Scholar
  9. Borroni, P.F., andAtema, J. 1988. Adaptation in chemoreceptor cells I. Self-adapting backgrounds determine threshold and cause parallel shift of dose-response function.J. Comp. Physiol. A. 164:67–74.PubMedGoogle Scholar
  10. Borroni, P.F., andAtema, J. 1989. Adaptation in chemoreceptor cells II. The effects of cross-adapting backgrounds depend on spectral tuning.J. Comp. Physiol. A. 165:669–677.Google Scholar
  11. Cheer, A.Y.L., andKoehl, M.A.R. 1987. Paddles and rakes: fluid flow through bristled appendages of small organisms.J. Theor. Biol. 129:17–39.Google Scholar
  12. Christensen, T.A., andHildebrand, J.G. 1988. Frequency coding by central olfactory neurons in the sphinx moth,Manduca sexta.Chem. Senses 13:123–130.Google Scholar
  13. David, C.T., Kennedy, J.S., Ludlow, A.R., Perry, J.N., andWall, C. 1982. A reappraisal of insect flight towards a distant, point source of wind borne odor.J. Chem. Ecol. 8:1207–1215.Google Scholar
  14. Denny, M.W. 1988. Biology and the Mechanics of the Wave-Swept Environment. Princeton University Press, Princeton, New Jersey.Google Scholar
  15. Devine, D.V., andAtema, J. 1982. Function of chemoreceptor organs in spatial orientation of the lobster,Homarus americanus: Differences and overlap.Biol. Bull. 163:144–153.Google Scholar
  16. Elkinton, J.S., Cardé, R.T., andMason, C.J. 1984. Evaluation of time-average dispersion models for estimating pheromone concentration in a deciduous forest.J. Chem. Ecol. 10:1081–1108.Google Scholar
  17. Ertman, S.C., andJumars, P.A. 1988. Effects of bivalve siphonal currents on the settlement of inert particles and larvae.J. Mar. Res. 46:797–813.Google Scholar
  18. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., andBrooks, J.H. 1979. Mixing in Inland and Coastal Waters. Academic Press, New York.Google Scholar
  19. Galus, Z., Schenk, J.O., andAdams, R.N. 1982. Electrochemical behavior of very small electrodes in solution.J. Electroanal. Chem. 135:1–11.Google Scholar
  20. Gerhardt, G.A., Oke, A.F., Nagy, G., Moghaddam, B., andAdams, R.N. 1984. Nafion-coated electrodes with high selectivity for CNS electrochemistry.Brain Res. 290:390–395.PubMedGoogle Scholar
  21. Gerhardt, G.A., Rose, G.M., andHoffer, B.J. 1987. In vivo electrochemical demonstration of potassium-evoked monoamine release from rat cerebellum.Brain Res. 413:327–335.PubMedGoogle Scholar
  22. Ghiradella, H., Case, J.F., andCronshaw, J. 1968. Structure of aesthetascs in selected marine and terrestrial decapods: Chemoreceptor morphology and environment.Am. Zool. 8:603–621.PubMedGoogle Scholar
  23. Gleeson, R.A., Carr, W.E.S., andTrapido-Rosenthal, H.G. 1993. Morphological characteristics facilitating stimulus access and removal in the olfactory organ of the spiny lobster,Panulirus argus: Insight from design.Chem. Senses 18:67–75.Google Scholar
  24. Gomez, G., Voigt, R., andAtema, J. 1992. Frequency coding in chemoreceptor cells.Chem Senses 17:631–632.Google Scholar
  25. Johnsen, P.B., andTeeter, J.H. 1980. Spatial gradient detection of chemical cues by catfish.J. Comp. Physiol. A. 140:95–99.Google Scholar
  26. Kaissling, K.E., Zack-Straussfeld, C., andRumbo, E. 1987. Adaptation processes in insect olfactory receptors: mechanisms and behavioral significance, pp. 104–112,in S. Roper and J. Atema (eds.). Olfaction and Taste IX. New York Academy of Science, New York.Google Scholar
  27. Kennedy, J.S. 1986. Some current issues in orientation to odour sources, pp. 11–25in T.L. Payne, M.C. Birch, and C.E.J. Kennedy (eds.). Mechanisms in Insect Olfaction. Oxford University Press, New York, New York.Google Scholar
  28. Labarbera, M., andVogel, S. 1976. An inexpensive thermistor flowmeter for aquatic biology.Limnol. Oceanogr. 21:750–756.Google Scholar
  29. Laverack, M.S. 1988. The diversity of chemoreceptors, pp. 287–312,in J. Atema, A.N., Popper, R.R. Fay, and W.N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Springer-Verlag, Berlin.Google Scholar
  30. List, E.J. 1982. Turbulent jets and plumes.Annu. Rev. Fluid Mech. 14:189–212.Google Scholar
  31. McLeese, D.W. 1973. Orientation of lobsters (Homarus americanus) to odor.J. Fish. Res. Board Can. 30:838–840.Google Scholar
  32. Miksad, R.W., andKittredge, J. 1979. Pheromone aerial dispersion: A filament model.14th Conf. Agric. and For. Met. Am. Met. Soc. 1:238–243.Google Scholar
  33. Monismith, S.G., Koseff, J.R., Thompson, J.K., O'Riordan, C.A., andNepf, H.M. 1990. A study of model bivalve siphonal currents.Limnol. Oceanogr. 35:680–696.Google Scholar
  34. Moore, P.A., andAtema, J. 1988. A model of a temporal filter in chemoreception to extract directional information from a turbulent odor plume.Biol. Bull. 174:355–363.Google Scholar
  35. Moore, P.A. andAtema, J. 1991. Spatial information in the three-dimensional fine structure of an aquatic odor plume.Biol. Bull. 181:408–418.Google Scholar
  36. Moore, P.A., Gerhardt, G.A., andAtema, J. 1989. High resolution spatio-temporal analysis of aquatic chemical signals using microelectrochemical electrodes.Chem. Senses 14:829–840.Google Scholar
  37. Moore, P.A., Atema, J., andGerhardt, G.A. 1991. Fluid dynamics and microscale odor movement in the chemosensory appendages of the lobster,Homarus americanus.Chem. Senses 16:663–674.Google Scholar
  38. Moore, P.A., Zimmer-Faust, R.K., BeMent, S.L., Weissburg, M.J., Parrish, M.J., andGerhardt, G.A. 1992. Measurement of microscale patchiness in a turbulent aquatic odor plume using a semiconductor-based microprobe.Biol. Bull. 183:138–142.Google Scholar
  39. Murlis, J., andJones, C.D. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources.Physiol. Entomol. 6:71–86.Google Scholar
  40. Murlis, J., Willis, M.A., andCardé, R.T. 1991. Odour signals: patterns in space and time, pp. 6–17,in K. Doving (eds.). Proceedings of the Tenth International Symposium on Olfaction and Taste, Graphic Communication System, Oslo.Google Scholar
  41. Nowell, A.R.M., andJumars, P.A. 1984. Flow environments of aquatic benthos.Annu. Rev. Ecol. Syst. 15:303–328.Google Scholar
  42. Nowell, A.R.M., andJumars, P.A. 1987. Flumes: Theoretical and experimental considerations for simulation of benthic environments.Oceanogr. Mar. Biol. Annu. Rev. 25:91–112.Google Scholar
  43. Reeder, P.B., andAche, B.W. 1980. Chemotaxis in the Florida spiny lobster,Panulirus argus.Anim. Behav. 28:831–839.Google Scholar
  44. Rubenstein, D.I., andKoehl, M.A.R. 1977. The mechanisms of filter feeding: Some theoretical considerations.Am. Nat. 111:981–994.Google Scholar
  45. Scholz, N., andAtema, J. 1991. Effect of flow velocity on chemical signal dispersal and hermit crab orientation.Chem. Senses 16:577–578.Google Scholar
  46. Tennekes, H., andLumley, J.L. 1972. A First Course in Turbulence, MIT Press, Cambridge, Massachusetts, 300 pp.Google Scholar
  47. Voigt, R., andAtema, J. 1990. Adaptation in chemoreceptor cells. III. Effects of cumulative adaptation.J. Comp. Physiol. A. 166:865–874.Google Scholar
  48. Weissburg, M.J., andZimmer-Faust, R.K. 1993. Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation.Ecology. 74:1428–1443.Google Scholar
  49. Westerberg, H. 1991. Properties of aquatic odour trails, pp. 45–65,in K. Døving (eds). Proceedings of the Tenth International Symposium on Olfaction and Taste, Graphic Communication System, Oslo.Google Scholar
  50. Wright, L.D. 1989. Benthic boundary layers of estuarine and coastal environments.Rev. Aquat. Sci. 1:75–95.Google Scholar
  51. Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  52. Zimmer-Faust, R.K. 1989. The relationship between chemoreception and foraging behavior in crustaceans.Limnol. Oceanogr. 34:967–974.Google Scholar
  53. Zimmer-Faust, R.K., Stanfill, J.M., andCollard, S.B. III. 1988. A fast, multichannel fluorometer for investigating aquatic chemoreception and odor trails.Limnol. Oceanogr. 33:1586–1595.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Paul A. Moore
    • 1
    • 3
  • Marc J. Weissburg
    • 2
  • J. Michael Parrish
    • 3
  • Richard K. Zimmer-Faust
    • 4
  • Greg A. Gerhardt
    • 3
  1. 1.Monell Chemical Senses CenterPhiladelphia
  2. 2.Department of BiologyGeorgia State UniversityAtlanta
  3. 3.Departments of Pharmacology and Psychiatry Neuroscience Training Program, and Rocky Mountain Center for Sensor TechnologyUniversity of Colorado Health Sciences CenterDenver
  4. 4.Department of Biology, Marine Sciences Program, and Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaColumbia

Personalised recommendations