Calcified Tissue Research

, Volume 7, Issue 1, pp 81–92 | Cite as

Calcium absorption and the vitamin D3-dependent calcium-binding protein

I. Inhibition by dietary strontium
  • R. A. Corradino
  • J. G. Ebel
  • P. H. Craig
  • A. N. Taylor
  • R. H. Wasserman
Original Papers

Abstract

Normal 2-week-old chicks, when fed a low-calcium (0.1%), vitamin D3-replete diet containig stable strontium at a level equimolar to 1.2% calcium, developed a severe rachiticlike condition within 7 days. Whereas formerly it was suspected that “strontium rickets” resulted from direct inhibition of calcification only, it was shown that, preceding any detectable bone change, strontium inhibited vitamin D3-induced CaBP production and, simultaneously, the intestinal calcium absorptive mechanism. The results suggest the possibility that this effect of strontium may be due to its interference with the normal mechanism of calcium regulation of CaBP synthesis.

Key words

Strontium Vitamin D3 Calcium Absorption Bone 

Résumé

Des poulets normaux, âgés de 2 semaines, présentent une condition voisine d'une rachitisme grave, lorsqu'on les soumet pendant 7 jours à un régime pauvre en calcium (0,1%), riche en vitamine D3, et contenant une quantité stable de strontium, équimolaire à 1,2% de calcium. Alors que l'on pensait que le rachitisme induit par le strontium était lié à une inhibition directe de la calcification, il apparait qu'avant toute modification osseuse apparente, le strontium inhibe la production du CaPB induit par la vitamine D3, ainsi que le mécanisme d'absorption intestinale du calcium. Il semble que cet effet du strontium soit lié à sa participation dans le mécanisme normal de la régulation du calcium au cours de la synthèse de CaBP.

Zusammenfassung

Normale, 2wöchige Kücken gerieten innerhalb von 7 Tagen in einen schweren, rachitisänhlichen Zustand, wenn sie eine calciumarme (0,1%0 und Vitamin D3-reiche Nahrung erhielten, welcher kaltes Strontium in einer Konzentration von 2,62% (molaraequivalent mit 1,2% Calcium) zugesetzt wurde. Während man früher vermutete, daß die “Strontium-Rachitis” nur durch eine direkte Inhibition der Verkalkung entstehe, konnte nun gezeigt werden, daß — bevor eine sichtbare Knochenveränderung eintritt — die Vitamin D3-gesteuerte Bildung von CaBP (calciumbindendes Protein) und gleichzeitig der Mechanismus der Calciumabsorption im Darm durch Strontium gehemmt wird. Die gefundenen Resultate weisen auf die Möglichkeit hin, daß dieser Strontiumeffekt auf dessen Interferenz mit dem normalen Mechanismus der Calciumregulation durch die CaBP-Syntheses zurückgeführt werden kann.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Ashley, C. A., Feder, N.: Glycol methacrylate in histopathology. Arch. Path.81, 391–397 (1966).PubMedGoogle Scholar
  2. 2.
    Bartley, J. C., Reber, E. F.: Metabolism of radiostrontium in young pigs and in lactating rats fed stable strontium. J. Dairy Sci.44, 1754–1762 (1961).Google Scholar
  3. 3.
    ——: Toxic effects of stable strontium in young pigs. J. Nutr.75, 21–28 (1961).PubMedGoogle Scholar
  4. 4.
    Brock, J. F., Diamond, L. K.: Rickets in rats by iron feeding. J. Pediat.4, 442–453 (1934).Google Scholar
  5. 5.
    Carlsson, A., Lindquist, B.: Comparison of intestinal and skeletal effects of vitamin D in relation to dosage. Acta physiol. scand.35, 53–55 (1955).PubMedGoogle Scholar
  6. 6.
    Colvin, L. B.: Metabolism of strontium. Ph. D. Thesis, Texas A and M University, 1967.Google Scholar
  7. 7.
    Comar, C. L., Wasserman, R. H., Nold, M. M.: Strontium-calcium discrimination factors in the rat. Proc. Soc. exp. Biol. (N. Y.)92, 859–863 (1956).Google Scholar
  8. 8.
    Corradino, R. A., Wasserman, R. H.: Actinomycin D inhibition of vitamin D3-induced calcium-binding protein (CaBP) formation in chick duodenal mucosa. Arch. Biochem.126, 957–960 (1968).PubMedGoogle Scholar
  9. 9.
    —, Ebel, J. G., Craig, P. H., Taylor, A. N., Wasserman, R. H.: Calcium absorption and the vitamind D3-dependent calcium-binding protein. II. Recovery from dietary strontium inhibition. Calc. Tiss. Res.7, 93–102 (1971).Google Scholar
  10. 10.
    —, Wasserman, R. H.: Strontium inhibition of vitamin D3-induced calcium-binding protein (CaBP) and calcium absorption in chick intestine. Proc. Soc. exp. Biol. (N. Y.)133, 960–963 (1970).Google Scholar
  11. 11.
    Follis, R. H., Jr.: Bone changes resulting from pareteral strontium administration. Fed. Proc.14, 403 (1955).Google Scholar
  12. 12.
    Johnson, A. R., Armstrong, W. D., Singer, L.: The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues of the rat. Calc. Tiss. Res.2, 242–252 (1968).Google Scholar
  13. 13.
    Jones, J. H.: The metabolism of calcium and phosphorus as influenced by the addition to the diet of salts of metals which form insoluble phosphates. Amer. J. Physiol.124. 230–237 (1938).Google Scholar
  14. 14.
    Lowry, O. H., Rosebrough, M. J., Farr, A. D., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951).PubMedGoogle Scholar
  15. 15.
    MacGregor, R. R., Hamilton, J. W., Cohn, D. V.: The induction of calcium binding protein biosynthesis in intestine by vitamin D3. Biochim. biophys. Acta (Amst.)222, 482–490 (1970).Google Scholar
  16. 16.
    Norman, A. W.: Actinomycin D and the response to vitamind D. Science149, 184–186 (1965).PubMedGoogle Scholar
  17. 17.
    Shipley, P. G., Park, E. A., McCollum, E. V., Simmonds, N., Kinney, E. M.: Studies on experimental rickets. XX. The effects of strontium administration on the histological structure of the growing bones. Bull. Johs Hopk. Hosp.33, 216–220 (1922).Google Scholar
  18. 18.
    Sobel, A. E.: Local factors in the mechanism of calcification. Ann. N. Y. Acad. Sci.60, 713–732 (1954).Google Scholar
  19. 19.
    Storey, E.: Experimental epiphyseal cartilage growth anomalies. J. Bone Jt. Surg.47B, 145–150 (1965).Google Scholar
  20. 20.
    Taylor, A. N., Wasserman, R. H.: Vitamin D3-induced calcium-binding protein: partial purification, electrophoretic visualization, and tissue distribution. Arch. Biochem.119, 536–540 (1967).PubMedGoogle Scholar
  21. 21.
    —: Correlations between the vitamin D-induced calcium-binding protein and the intestinal absorption of calcium. Fed. Proc.28, 1834–1838 (1969).PubMedGoogle Scholar
  22. 22.
    Wasserman, R. H.: Studies on vitamin D3 and the intestinal absorption of calcium and other ions in the rachitic chick. J. Nutr.77, 69–80 (1962).PubMedGoogle Scholar
  23. 23.
    —, Corradino, R. A., Taylor, A. N.: Vitami D-dependent calcium-binding protein: purification and some properties. J. biol. Chem.243, 3978–3986 (1968).PubMedGoogle Scholar
  24. 24.
    ———: Binding protein from animals with possible transport function. J. gen. Physiol.54, 114s-134s (1969).Google Scholar
  25. 25.
    —, Taylor, A. N.: Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science152, 791–793 (1966).Google Scholar
  26. 26.
    Weber, C. W., Doberenz, Z. R., Wyckoff, R. W. G., Reid, B. L.: Strontium metabolism in chicks. Poultry Sci.47, 1318–1323 (1968).Google Scholar
  27. 27.
    Zull, J. E., Czarnowska-Misztal, E., DeLuca, H. F.: Actinomycin D inhibition of vitamin D action. Science149, 182–184 (1965).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • R. A. Corradino
    • 1
  • J. G. Ebel
    • 1
  • P. H. Craig
    • 1
  • A. N. Taylor
    • 1
  • R. H. Wasserman
    • 1
  1. 1.Department of Physical Biology, New York State Verterinary CollegeCornell University IthacaIthacaU.S.A.

Personalised recommendations