Advertisement

Antonie van Leeuwenhoek

, Volume 17, Issue 1, pp 325–362 | Cite as

Metabolism and morphogenesis in a newBlastocladiella

  • Edward C. Cantino
Article

Summary

  1. 1.

    One phase of morphogenesis (production of resistant sporangia) in the life cycle ofBlastocladiella has been investigated experimentally in some detail, and the underlying biochemical transformations have, in part, been elucidated. Conversely, morphogenesis has been made to serve as a tool in physiological studies.

    Elevated concentrations of CO2 sources induce R.S. spores to develop directly into resistant-sporangial plants instead of gametophytes. The phenomenon, furthermore, is dependent upon additional factors found in a non-standardized peptone, but not in vitamin-free casein hydrolysate. Such factors can be effectively replaced by certain Krebs-cycle intermediates (e.g.a-ketoglutarate and citrate) and oxidative-decarboxylation inhibitors or carbonyl reagents (e.g. arsenite and semicarbazide).

    Biotin completely eliminates the effect ofa-ketoglutarate in inducing the formation of R.S. plants; this offers strong indirect evidence for the role of biotin in the oxidative decarboxylation ofa-ketoglutarate.

    Blastocladiella is heterotrophic for thiamine. The remarkable fact that it can be replaced by a combination of bicarbonate, acetate, and pantothenate is suggestive of the substitution of a Coenzyme A-dependent acetylation reaction for the decarboxylation of pyruvate during growth.

    It has been concluded that retardation of the oxidative decarboxylation ofa-ketoglutarate, and simultaneous accumulation of its precursors back to the citrate stage, is directly or indirectly related to the formation of R.S. The strong lactate production, the thiamine heterotrophy, the supposedly weak C2-forming mechanism associated with it, the probably-functional Wood-Werkman reaction, and the by-passing of the B1-deficiency with a source of CO2, acetate, and pantothenate are further discussed with relation to the biosynthetic mechanism underlying the morphogenetic pattern.

     
  2. 2.

    The germination of resistant sporangia, a very precise mechanism, is separable into two distinct phases; one, a period (e.g. 60 min. atca. 20° C.) terminating with cracking of the thick pitted wall, and the other, a subsequent period which leads to the final discharge of spores. Relatively low concentrations of anions, as well as different temperatures, exert a pronounced differential influence on the two processes.

     

Keywords

Biotin Thiamine Arsenite Lactate Production Casein Hydrolysate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Ajl andC. H. Werkman, J. Bact.57, 579, 1949.Google Scholar
  2. 2.
    E. S. G. Barron, J. M. Goldinger, M. A. Lipton andC. M. Lyman, J. Biol. Chem.141, 975, 1941.Google Scholar
  3. 3.
    E. Blackwell, Trans. Brit. Mycol. Soc.26, 93, 1943.Google Scholar
  4. 4.
    L. R. Blinks, Cold Spring Harbor Symposia Quant. Biol.8, 204, 1940.Google Scholar
  5. 5.
    P. R. Burkholder, I. McVeigh andD. Moyer, J. Bact.48, 385, 1944.Google Scholar
  6. 6.
    E. C. Cantino, Amer. J. Bot.36, 95, 1949.Google Scholar
  7. 7.
    E. C. Cantino, Quart. Rev. Biol.25, 269, 1950.PubMedGoogle Scholar
  8. 8.
    E. C.Cantino (unpublished).Google Scholar
  9. 9.
    J. N. Couch andA. J. Whiffen, Amer. J. Bot.29, 582, 1942.Google Scholar
  10. 10.
    R. Emerson, Lloydia4, 77, 1941.Google Scholar
  11. 11.
    R. Emerson, Ann. Rev. Microbiol.4, 169, 1950.Google Scholar
  12. 12.
    R. Emerson andE. C. Cantino, Amer. J. Bot.35, 157, 1948.Google Scholar
  13. 13.
    R. Emerson andC. M. Wilson, Science110, 86, 1949.Google Scholar
  14. 14.
    J. W. Foster, Chemical activities of fungi, Academic Press, Inc. New York, 1949.Google Scholar
  15. 15.
    J. W. Foster andE. S. Wynne, J. Bact.55, 623, 1948.Google Scholar
  16. 16.
    T. E. Friedemann andJ. B. Graeser, J. Biol. Chem.100, 291, 1933.Google Scholar
  17. 17.
    N. Fries, Svensk. Bot. Tidskr.43, 316, 1949.Google Scholar
  18. 18.
    D. R. Goddard, Cold Spring Harbor Symposia Quant. Biol.7, 362, 1939.Google Scholar
  19. 19.
    D. Gottlieb, Bot. Rev.16, 229, 1950.Google Scholar
  20. 20.
    L. E.Hawker, Physiology of fungi, Univ. London Press, Ltd., 1950.Google Scholar
  21. 21.
    G. Knaysi, Bact. Rev.12, 19, 1948.Google Scholar
  22. 22.
    B. G. J. G. Knight, Vitamins and Hormones3, 105, 1945.Google Scholar
  23. 23.
    H. A. Krebs, Adv. Enzymol.3, 191, 1943.Google Scholar
  24. 24.
    A. Lwoff andJ. Monod, Ann. Inst. Pasteur73, 323, 1947.Google Scholar
  25. 25.
    V. D. Matthews, Jour. Elisha Mitchell Sci. Soc.53, 191, 1937.Google Scholar
  26. 26.
    G. D. Novelli andF. Lipmann, Arch. Biochem.14, 23, 1947.Google Scholar
  27. 27.
    S. Ochoa, J. Biol. Chem.174, 115, 1948.Google Scholar
  28. 28.
    A. K. Parpart, Cold Spring Harbor Symposia Quant. Biol.8, 25, 1940.Google Scholar
  29. 29.
    L. Quantz, Jahrb. Wiss. Bot.91, 120, 1943.Google Scholar
  30. 30.
    W. Shive andL. L. Rogers, J. Biol. Chem.169, 453, 1947.Google Scholar
  31. 31.
    T. M. Sonneborn, J. Exp. Zool.113, 87, 1950.Google Scholar
  32. 32.
    G. Sörgel, Nach. Ges. Wiss. Göttingen, Math.-Physik. Kl., Fachgruppe VI (Biol)2, 155, 1937.Google Scholar
  33. 33.
    F. K. Sparrow, Aquatic Phycomycetes, Univ. Michigan Press, Ann Arbor, 1943.Google Scholar
  34. 34.
    H. Stüben, Arch. Wiss. Bot.30, 353, 1939.Google Scholar
  35. 35.
    W. W. Umbreit, R. H. Burris andJ. F. Stauffer, Manometric techniques and related methods for the study of tissue metabolism, Burgess Publ. Co., Minneapolis, 1945.Google Scholar
  36. 36.
    W. H. Wilkins, Trans. Brit. Mycol. Soc.23, 65, 1939.Google Scholar
  37. 37.
    E. S. Wynne andJ. W. Foster, J. Bact.55, 331, 1948.Google Scholar

Copyright information

© Swets en Zeitlinger 1951

Authors and Affiliations

  • Edward C. Cantino
    • 1
  1. 1.Botanical LaboratoryUniversity of PennsylvaniaPhiladelphia

Personalised recommendations