Separation and preconcentration of131I and131IO 3 in a liquid-liquid system

  • Š. Palágyi
Proceedings of the 12th Radiochemical Conference
  • 33 Downloads

Abstract

The application of isotope exchange in a liquid-liquid system for the separation and preconcentration of131I and131IO3/− from water is described. For this purpose a solution of elemental iodine in tri-n-butyl phosphate diluted with toluene was used. The influence of various factors on the separation efficiency of131I was investigated. These are: time of the exchange, concentration of a carrier in the aqueous phase, concentration of I2 in the organic phase, volume ratio of the phases, pH, foreign ions, storage of the organic phase, etc. The method is quite rapid and the selective preconcentration of these chemical forms of radioiodine from water can be accomplished even in the presence of the most important fission products. This method makes also possible to separate these chemical forms from each other under controlled pH conditions. The activity of the separated radioiodine can be measured advantageously, e.g., by homogeneous liquid scintillation counting after decolourization of the organic phase.

Keywords

Toluene Iodine Organic Phase Liquid Scintillation Scintillation Counting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. BULMAN, in: Speciation of Fission and Activation Products in the Environment, R. A. BULMAN, J. R. COOPER (Eds), Elsevier Applied Science Publishers, London, 1986.Google Scholar
  2. 2.
    V. W. TRUESDALE, Marine Chem., 6 (1978) 253.Google Scholar
  3. 3.
    J. B. LUTEN, J. R. W. WOITTIEZ, H. A. DAS, C. L. DE LIGNY, J. Radioanal. Chem., 43 (1978) 175.Google Scholar
  4. 4.
    H. BEHRENS, in: Speciation of Fission and Activation Products in the Environment, R. A. BULMAN, J. R. COOPER (Eds), Elsevier Applied Science Publishers, London, 1986.Google Scholar
  5. 5.
    T. SZABOVÁ, Š. PALÁGYI, Pol'nohospodárstvo (Agriculture), 22 (1976) 673.Google Scholar
  6. 6.
    A. SAAS, A. GRAUBY, Health Phys., 31 (1976) 21.PubMedGoogle Scholar
  7. 7.
    Y. MURAMATSU, S. UCHIDA, M. SUMIYA, Y. OHMOMO, H. OBATA, Water, Air Soil Pollut., 45 (1989) 157.Google Scholar
  8. 8.
    T. SZABOVÁ, Isotopenpraxis, 12 (1976) 401.Google Scholar
  9. 9.
    S. FOTI, Health Phys., 33 (1977) 387.PubMedGoogle Scholar
  10. 10.
    Y. MURAMATSU, D. CHRISTOFFERS, Y. OHMOMO, J. Radiat. Res., 24 (1983) 326.PubMedGoogle Scholar
  11. 11.
    F. W. LENGEMAN, Health Phys., 17 (1969) 565.PubMedGoogle Scholar
  12. 12.
    L. MRÁZ, N. STOLLÁROVÁ, Š. PALÁGYI, Isotopenpraxis, 11 (1975) 66.Google Scholar
  13. 13.
    Š. PALÁGYI, M. ZADUBAN, Chem. Zvesti (Chem. Papers), 23 (1969) 876.Google Scholar
  14. 14.
    Y. MAKI, J. Radioanal. Chem., 27 (1975) 33.Google Scholar
  15. 15.
    J. BENEŠ, Coll. Czechoslov. Chem. Comm., 44 (1979) 1406.Google Scholar
  16. 16.
    Š. PALÁGYI, M. ZADUBAN, Radiochem. Radioanal. Lett., 20 (1974) 111 and 101.Google Scholar
  17. 17.
    J. B. LUTEN, H. A. DAS, C. L. DE LIGNY, J. Radioanal. Chem., 35 (1977) 147.Google Scholar
  18. 18.
    O. GIMESI, É. BÁNYAI, Acta, Chim. Acad. Sci. Hung., 101 (1979) 309.Google Scholar
  19. 19.
    J. TÖLGYESSY, M. KYRŠ, Radioanalytical Chemistry, Vol. 1, E. Horwood, Chichester, 1989.Google Scholar
  20. 20.
    N. IKEDA, Y. TAKAHASHI, K. TANAKA, K. KIMURA, Radioisotopes (Tokyo), 20 (1971) 48.Google Scholar
  21. 21.
    R. DENIG, N. TRAUTMANN, G. HERRMANN, J. Radioanal. Chem., 5 (1970) 223.Google Scholar
  22. 22.
    M. T. THAKUR, Separ. Sci., 5 (1970) 645.Google Scholar
  23. 23.
    Š. PALÁGYI, Euroanalysis II, Abstracts of Papers, Budapest, 1975, p. 477.Google Scholar
  24. 24.
    T. BRAUN, G. GHERSINI, Extraction Chromatography, Akadémiai Kiadó, Budapest, 1975.Google Scholar
  25. 25.
    T. BRAUN, A. B. FARAG, J. Radioanal. Chem., 25 (1975) 5.Google Scholar
  26. 26.
    K. OHWADA, T. ISHIBARA, J. Inorg. Nucl. Chem., 28 (1966) 2343.Google Scholar
  27. 27.
    Š. PALÁGYI, M. ZADUBAN, M. BRUTOVSKÝ, Radiochem. Radioanal. Lett., 8 (1971) 79.Google Scholar
  28. 28.
    Š. PALÁGYI, R. MARKUSOVÁ, Radiochem. Radioanal. Lett., 26 (1976) 269.Google Scholar
  29. 29.
    H. BEHRENS, Z. Anal. Chem., 236 (1968) 396.Google Scholar
  30. 30.
    J. BENEŠ, Jad. Energie, 29 (1983) 365.Google Scholar
  31. 31.
    V. M. VDOVENKO, L. S. BULYANITSA, Radiokhimiya, 6 (1964) 399.Google Scholar
  32. 32.
    M. F. A. DOVE, D. B. SOWERBY, Isotopic Halogen Exchange Reactions, in Halogen Chemistry, Vol. 1, V. GUTMAN (Ed.), Academic Press, London, 1967.Google Scholar
  33. 33.
    H. J. M. BOWEN, Environmental Chemistry of the Elements, Academic Press, London, 1979.Google Scholar
  34. 34.
    G. CHARLOT, J. BADOZ-LAMBING, B. TREMILLON, Electrochemical Reactions, Elsevier, Amsterdam, 1962.Google Scholar
  35. 35.
    A. F. M. BARTON, G. A. WRIGHT, Anal. Chim. Acta, 43 (1968) 328.Google Scholar
  36. 36.
    R. FURIUCHI, H. A. LIEBHAFSKY, Bull. Chem. Soc. Japan, 46 (1973) 2008.Google Scholar
  37. 37.
    N. IKEDA, K. TANAKA, J. Chromatogr., 114 (1975) 389.Google Scholar
  38. 38.
    Š. PALÁGYI, J. Radioanal. Chem., 29 (1976) 271.Google Scholar
  39. 39.
    Š. PALÁGYI, Unpublished results.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • Š. Palágyi
    • 1
  1. 1.Institute of Radioecology and Applied Nuclear TechniquesKošice(Czechoslovakia)

Personalised recommendations