Hyperfine Interactions

, Volume 21, Issue 1–4, pp 143–158 | Cite as

Weak nucleon currents in beta decay and muon capture

  • M. Morita
Article

Abstract

We made extensive investigations on the weak charged nucleon currents and structure of complex nuclei in weak nuclear processes. Using our new formalism, which has almost no approximation as far as the lepton part is concerned, we have studied the beta-ray spectra and beta-ray angular distributions in the12B and12N beta decays. The weak magnetism predicted by CVC is in excellent agreement with the experimental data on beta-ray spectra given by the Columbia and Heidelberg groups. It is noticed here that the differenceα−α+ of the coefficients in the beta-ray angular distributions in aligned12B and12N is free from ambiguity of the nuclear model. We found practically no second-class induced tensor current with the data given by the Osaka, Louvain and Zürich groups. On the other hand, the sumα+ of the coefficients represents the time component of the main axial vector current, and it is free from weak form factors. With this sum we studied the exchange-current and core-polarization effects. These two effects are large, and they are almost cancelled out by each other in this case. We also found the strength of the induced pseudoscalar form factor which is generally consistent with PCAC, from nuclear polarizations of12B in muon capture of12C performed by the Zürich and Tokyo groups. These nuclear polarizations are insensitive to the nuclear model, if the exchange-current and corepolarization effects are properly taken into account.

Keywords

Form Factor Beta Decay Nuclear Polarization Nuclear Model Weak Magnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For more detail, see e.g. C.S. Wu and S.A. Moszkowski,Beta Decay (Wiley, New York, 1966)Google Scholar
  2. [1]a
    M. Morita,Beta Decay and Muon Capture (Benjamin, Mass., 1973).Google Scholar
  3. [2]
    A.I. Boothroyd, J. Markey and P. Vogen, preprint.Google Scholar
  4. [3]
    E.g.,C. Rubbia, Asia Pacific Phys. Conf., Singapore (1983).Google Scholar
  5. [4]
    S. Weinberg, Phys. Rev. 112(1958)1375.Google Scholar
  6. [5]
    R.P. Feynman and M. Gell-Mann, Phys. Rev. 109(1958)193.Google Scholar
  7. [6]
    S.S. Gershtein and J.B. Zeldovich, Sov. Phys. JETP 2(1956)576.Google Scholar
  8. [7]
    Y.K. Lee, L.W. Mo and C.S. Wu, Phys. Rev. Lett. 10(1963)253.Google Scholar
  9. [8]
    M.L. Goldberger and S.B. Treiman, Phys. Rev. 111(1958)354.Google Scholar
  10. [9]
    D.H. Wilkinson, Phys. Lett. 48B(1974)169; see also refs. to previous works given there.Google Scholar
  11. [10]
    D.H. Wilkinson and D.E. Alburger, Phys. Rev. Lett. 26(1971)1127.Google Scholar
  12. [11]
    K. Kubodera and A. Arima, Prog. Theor. Phys. 57(1977)1599.Google Scholar
  13. [12]
    K. Koshigiri, M. Nishimura, H. Ohtsubo and M. Morita, Nucl. Phys. A319(1979)301.Google Scholar
  14. [13]
    M. Morita, Phys. Rev.113 (1958)1584.Google Scholar
  15. [14]
    M. Morita, M. Nishimura, A. Shimizu, H. Ohtsubo and K. Kubodera, Prog. Theor. Phys. Suppl. No. 60(1976)1.Google Scholar
  16. [15]
    M. Morita, M. Nishimura, H. Ohtsubo and J. Yamane, Proc. Int. Conf. Nucl. Structure, Tokyo, 1977 (J. Phys. Soc. Japan Suppl. 44(1978)407).Google Scholar
  17. [16]
    M. Morita, M. Nishimura and H. Ohtsubo, Phys. Lett. 73B(1978)17.Google Scholar
  18. [17]
    J.N. Huffaker and C.E. Laird, Nucl. Phys. A92(1967)584; W. Bühring, Kernforschungszentrum Karlsruhe Report, KFK-559 (1967).Google Scholar
  19. [18]
    C.P. Bhalla and M.E. Rose, Oak Ridge National Laboratory Report ORNL-3207 (1961).Google Scholar
  20. [19]
    F.P. Calaprice and B.R. Holstein, Nucl. Phys. A273(1976)301.Google Scholar
  21. [20]
    C.S. Wu, Y.K. Lee and L.W. Mo, Phys. Rev. Lett. 39(1977)72.Google Scholar
  22. [21]
    W. Kaina, V. Soergel, H. Thies and W. Trost, Phys. Lett. 70B(1977)411.Google Scholar
  23. [22]
    M. Morita, Bull. Amer. Phys. Soc. Ser. II 4(1959)407; Nucl. Phys. 14(1959)106; Phys. Rev. 113(1959)1584; Phys. Rev. 114(1959)1080.Google Scholar
  24. [23]
    M. Morita and R. Morita, Phys. Rev. 110(1958)461;Google Scholar
  25. [23a]
    M. Morita,Beta Decay and Muon Capture (Benjamin, Mass., 1973) Ch. 6Google Scholar
  26. [23b]
    M. Morita, M. Fuyuki and S. Tsukada, Progr. Theor. Phys. 47(1972)556.Google Scholar
  27. [24]
    M. Morita, Prog. Theor. Phys. 9(1953)345; Phys. Rev. 90(1953)1005; and the second paper in ref. [22].Google Scholar
  28. [25]
    M. Morita and I. Tanihata, Phys. Rev. Lett. 35(1975)26; and references therein.Google Scholar
  29. [26]
    K. Sugimoto, T. Minamisono, T. Nojiri and Y. Masuda, Proc. Int. Conf. Nucl. Strcture, Tokyo, 1977 (J. Phys. Soc. Japan Suppl. 44(1978)801.Google Scholar
  30. [27]
    P. Lebrun, Ph. Deschepper, L. Grenacs, J. Lehmann, C. Leroy, L. Palffy and A. Possoz, Proc. Int. Conf. High Energy Phys. and Nucl. Structure, Zürich 1977; Phys. Rev. Lett. 40 (1978)302Google Scholar
  31. [27]a
    H. Brändle, G. Miklos, L.Ph. Roesch, V.L. Telegdi, P. Truttmann, A. Zehnder, L. Grenacs, P. Lebrun and J. Lehmann, Phys. Rev. Lett. 41(1978)299.Google Scholar
  32. [28]
    Y. Masuda, T. Minamisono, Y. Nojiri and K. Sugimoto, Phys. Rev. Lett. 43(1979)1083.Google Scholar
  33. [29]
    K. Kubodera, J. Delorme and M. Rho, Phys. Rev. Lett. 40(1978)755.Google Scholar
  34. [30]
    K. Koshigiri, H. Ohtsubo and M. Morita, Prog. Theor. Phys. 66(1981)358.Google Scholar
  35. [31]
    S. Cohen and D. Kurath, Nucl. Phys. 73(1965)1.Google Scholar
  36. [32]
    P.S. Hauge and S. Maripuu, Phys. Rev. C8(1973)1609.Google Scholar
  37. [33]
    J.P. Elliott, A.D. Jackson, H.A. Narvromatis, E.A. Sanderson and B. Singh, Nucl. Phys. A121(1968)241.Google Scholar
  38. [34]
    M. Morita,Beta Decay and Muon Capture (Benjamin, Mass., 1973) p. 274.Google Scholar
  39. [35]
    M. Kobayashi, N. Ohtsuka, H. Ohtsubo and M. Morita, Nucl. Phys. A312(1978)377Google Scholar
  40. [35a]
    H. Ami, M. Kobayashi, H. Ohtsubo and M. Morita, Prog. Theor. Phys. 65(1981)632.Google Scholar
  41. [36]
    M. Fukui, K. Koshigiri, T. Sato, H. Ohtsubo and M. Morita, Prog. Theor. Phys. 70(1983) 827.Google Scholar
  42. [37]
    A. Possoz, Ph. Deschepper, L. Grenacs, P. Lebrun, J. Lehmann, L. Palffy, A. Gonçalvès and L. Telegdi, Phys. Lett. 70B(1977)265.Google Scholar
  43. [38]
    L.Ph. Roesch, N. Schlumpf, D. Taqqu, V.L. Telegdi, P. Truttmann and A. Zehnder, Phys. Lett. 107B(1981)31.Google Scholar
  44. [39]
    M. Giffon, A. Gonçalvès, P.A.M. Guichon, J. Julien, L. Roussel and C. Samour, Phys. Rev. C24(1981)241.Google Scholar
  45. [40]
    L.Ph. Roesch, V.L. Telegdi, P. Truttmann, A. Zehnder, L. Grenacs and L. Palffy, Phys. Rev. Lett. 46(1981)1507; Helv. Phys. Acta 55(1982)74.Google Scholar
  46. [41]
    M. Morita and R. Morita, J. Phys. Soc. Japan 19(1964)1964Google Scholar
  47. [41a]
    M. Morita, Phys. Rev. 161(1967)1028; J. Phys. Soc. Japan Suppl. 24(1968)731.Google Scholar
  48. [42]
    Y. Kuno, J. Imazato, K. Nishiyama, K. Nagamine, T. Yamazaki and T. Minamisono, private communication.Google Scholar
  49. [43]
    P.A.M. Guichon and C. Samour, Nucl. Phys. A382(1982)461.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1985

Authors and Affiliations

  • M. Morita
    • 1
  1. 1.Department of PhysicsOsaka UniversityOsakaJapan

Personalised recommendations