Netherland Journal of Aquatic Ecology

, Volume 29, Issue 1, pp 55–65 | Cite as

A model for calculation of diffuse light attenuation (PAR) and Secchi depth

  • H. Buiteveld


To evaluate measures and to analyze the possibilities of achieving lake restoration goals a model was developed to calculate Secchi depth and diffuse attenuation for PAR (Kpar). Inputs in the model are water the quality parameters chlorophyll-a, inorganic suspended matter, detritus and yellow substance. The model uses a spectral description of the radiative transfer of light. The coefficients relating the optical properties with the water quality parameters were found using an optimization procedure. The model was calibrated for four lakes in The Netherlands. Calculation of Secchi depth based on summer averaged input concentrations gave good results. Model results can be used to estimate the relative contribution of water quality parameters to the Secchi depth.


Secchi depth diffuse attenuation PAR water quality models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANONYMOUS, 1991. Water in the Netherlands. A time for action. Summary of the national policy document on water management. Second edition. Ministry of Transport and Public Works and Water Management, The Hague.Google Scholar
  2. BOWLING, L.C. and P.A. TYLER, 1986. The underwater light-field of lakes with marked physicochemical and biotic diversity in the water column. J. Plankton Res., 8: 69–77.Google Scholar
  3. BRICAUD, A., A. MOREL and L. PRIEUR, 1981. Absorption of dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr., 26: 43–53.Google Scholar
  4. BRICAUD, A. and A. MOREL, 1986. Light attenuation and scattering by phytoplanktonic cells: a theoretical modelling. Appl. Optics, 25: 571–580.Google Scholar
  5. BUITEVELD, H., J.H.M. Hakvoort and M. Donze, 1994. The optical properties of pure water. In: OCEAN Optics XII, J.S. Jaffe, Ed., SPIE Proc. Ser. 2258:174–183.Google Scholar
  6. CARLSON, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr., 22: 361–369.Google Scholar
  7. DAVIES-COLLEY, R.J., 1983. Optical properties and reflectance spectra of 3 shallow lakes obtained from spectrophotometric study. N.Z. J. Mar. Freshwat. Res., 17: 445–459.Google Scholar
  8. DAVIES-COLLEY, R.J., 1988. Measuring water clarity with a black disk. Limnol. Oceanogr., 33: 616–623.Google Scholar
  9. DEKKER, A.G., 1993. Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. Thesis, Free University Amsterdam.Google Scholar
  10. DIRKS, R.W.J., 1990. On the colour of the sea: with reference to remote sensing. Thesis, University of Utrecht.Google Scholar
  11. DUBELAAR, G.B.J., J. VISSER and M. DONZE, 1987. Anomalous behaviour of forward and perpendicular light scattering of cyanobacterium owing to intracellular gas vacuoles. Cytometry, 8: 405–412.PubMedGoogle Scholar
  12. DUNTLEY, S.Q., 1963. Light in the sea. J. Opt. Soc. Am., 53: 214–233.Google Scholar
  13. EFFLER, S.W., 1988. Secchi disc transparency and turbidity. J. Environ. Eng., 114: 1436–1447.Google Scholar
  14. GORDON, H.R., 1989. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water? Limnol. Oceanogr, 34: 1389–1409.Google Scholar
  15. GULATI, R.D., E.H.R.R. LAMMENS, M.-L. MEIJER and E. VAN DONK (Eds.), 1990. Biomanipulation, tool for water management. Hydrobiologia, 200/201, 628 pp.Google Scholar
  16. JEWSON, D.H., J.F. TALLING, M.J. DRING, M.M. TILZER, S.I. HEANEY and C. CUNNINGHAM, 1984. Measurement of photosynthetic available radiation in freshwater: comparative tests of some current instruments used in studies of primary production. J. Plankton Res., 6: 259–273.Google Scholar
  17. KALLE, K., 1966. The problem of Gelbstoff in the sea. Mar. Biol. Ann. Rev., 4: 203–218.Google Scholar
  18. KIRK, J.T.O., 1983. Light and photosynthesis in aquatic ecosystem. Cambridge Univ. Press, Cambridge.Google Scholar
  19. KIRK, J.T.O., 1984. Attenuation of solar radiation in scattering-absorbing waters: a simplified procedure for its calculation. Appl. Optics, 23: 3737–3739.Google Scholar
  20. KIRK, J.T.O., 1991. Volume scattering function, average cosines, and the underwater light field. Limnol. Oceanogr., 36: 455–467.Google Scholar
  21. KISHINO M., C.R. BOOTH and N. OKAMI, 1984. Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water. Limnol. Oceanogr., 29: 340–349.Google Scholar
  22. KRIJGSMAN, J., 1994. Optical remote sensing of water quality parameters; interpretation of reflectance spectra. Thesis, Delft University of Technology.Google Scholar
  23. LORENZEN, M.W., 1980. Use of chlorophyll-Secchi disk relationships. Limnol. Oceanogr., 25: 371–372.Google Scholar
  24. MASKE, H. and H. HAARDT, 1987. Quantitative in vivo absorption spectra of phytoplankton: detrital absorption and comparison with fluorescence excitation spectra. Limnol. Oceanogr., 32: 620–633.Google Scholar
  25. MEGARD, R.O., J.C. SETTLES, H.A. BOYER and W.S. COMBS, 1980. Light, Secchi disk, and trophic states. Limnol. Oceanogr., 25: 373–377.Google Scholar
  26. MEGARD, R.O. and T. BERMAN. 1989. Effects of algae on the Secchi transparency of the southeastern Mediterranean Sea. Limnol. Oceanogr., 34: 1640–1655.Google Scholar
  27. MEIJER, M-L, E.M. BLAAUW and A.W. BREUKELAAR. 1992. Drastic fish stock reduction in lake Wolderwijd. H2O, 25: 197–199 (in Dutch).Google Scholar
  28. PINTÉR, J., 1990. Lipschizian global optimization: theory and application. Institute for Inland Water Management and Waste Water Treatment, Report 90.020, Lelystad.Google Scholar
  29. PREISENDORFER, R.W., 1961. Application of radiative transfer theory to light measurements in the sea. Int. Union. Geod. Monogr., 10: 11–29.Google Scholar
  30. PREISENDORFER. R.W., 1986. Secchi disk science: visual optics of natural waters. Limnol. Oceanogr., 31: 909–926.Google Scholar
  31. PRIEUR, L. and S. SATHYENDRANATH, 1981. An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials. Limnol. Oceanogr., 26: 671–689.Google Scholar
  32. SATHYENDRANATH, S. and T. PLATT, 1988. The spectral irradiance field at the surface and the interior of the ocean. J. Geophys. Res. C., 93: 9270–9280.Google Scholar
  33. TYLER, J.E., 1968. The Secchi disk. Limnol. Oceanogr., 13: 1–6.Google Scholar
  34. VAN DE HULST, H.C., 1957. Light scattering by small particles. Dover Publ., New York.Google Scholar
  35. VAN DUIN, E.H.S., 1992. Sediment transport, light and algal growth in the Markermeer. Thesis, Agricultural University, Wageningen.Google Scholar
  36. VAN DER MOLEN, D.T. and J. PINTÉR, 1993. Environmental model calibration under different specifications: an application to the model SED. Ecol. Model., 68: 1–19.Google Scholar
  37. ZEPP, R.G. and P.F. SCHLOTZHAUER. 1981. Comparison of photochemical behaviour of various humic substances in water: III Spectroscopic properties of humic substances. Chemosphere, 10: 479–486.Google Scholar

Copyright information

© Journal of the Netherlands Society of Aquatic Ecology 1995

Authors and Affiliations

  • H. Buiteveld
    • 1
  1. 1.Institute for Inland Water Management and Waste Water Treatment (RIZA)AA LelystadThe Netherlands

Personalised recommendations