Skip to main content
Log in

The ultrametric Hilbert-space description of quantum measurements with a finite exactness

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We provide a mathematical description of quantum measurements with a finite exactness. The exactness of a quantum measurement is used as a new metric on the space of quantum states. This metric differs very much from the standard Euclidean metric. This is the so-called ultrametric. We show that a finite exactness of a quantum measurement cannot he described by real numbers. Therefore, we must change the basic number field. There exist nonequivalent ultrametric Hilbert space representations already in the finite-dimensional case (compare with ideas of L. de Broglie). Different preparation procedures could generate nonequivalent representations. The Heisenberg uncertainty principle is a consequence of properties of a preparation procedure. The uncertainty principle “time-energy” is a consequence of the Schrödinger dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Ballentine,Rev. Mod. Phys. 42 (4), 358–381 (1970); L. E. Ballentine,Quantum Mechanics (Prentice Hall, Englewood Cliffs, 1989).

    Google Scholar 

  2. N. Bohr,Phys. Rev. 48, 696 (1935).

    Google Scholar 

  3. P. A. M. Dirac.The Principles of Quantum Mechanics (Clarendon, Oxford, 1932); J. von Neumann,Matematische Grundlagen der Quantenmechanik (Berlin, 1932).

    Google Scholar 

  4. L. de Broglie,The Current Interpretation of Wave Mechanics: A critical Study (Elsevier, Amsterdam, 1964); L. de Broglie.La physique quantique restera-t-elle indéterministe?, (Gauthier-Villars, Paris, 1953).

    Google Scholar 

  5. K. Mahler,Introduction to p-adie Numbers and their Functions (Cambridge University Press, Cambridge, 1973); W. Schikhof,Ultrametric Calculus (Cambridge University Press, Cambridge. 1984); Z. I. Borevich and I. R. Schafarevich,Number Theory Academic, New York, 1966).

    Google Scholar 

  6. V. S. Vladimirov, I. V. Volovich, E. I. Zelenov,P-adic Numbers in Mathematical Physics (World Scientific, Singapore, 1993).

    Google Scholar 

  7. A. Yu. Khrennikov,P-adic-Valued Distributions in Mathematical Physics (Kluwer Academic, Dordrecht, 1994).

    Google Scholar 

  8. I. V. Volovich, “Number theory as the ultimate physical theory.” preprint TH.4781/87(1987);Class. Quantum Gravit. 4, L83-L87 (1987).

    Google Scholar 

  9. P. G. O. Freund and M. Olson.Phys. Lett. B 199, 186 (1987); P. G. O. Freund, M. Olson, and E. Witten,Phys. Lett. B 199, 191 (1987); P. H. Frampton and Y. Okada,Phys. Rev. Lett. 60, 484 (1988).

    Google Scholar 

  10. A. Yu. Khrennikov,Russ. Math. Surr. 45, 87 (1990);J. Math. Phys. 32, 932. (1991);Theor. Math. Phys. 83, 124 (1990);Sov. Phys. Dokl. 35, 867 (1990).

    Google Scholar 

  11. R. Cianci and A. Yu. Khrennikov,Phys. Let. B 328, 109–112 (1994).

    Google Scholar 

  12. H. S. Snyder,Phys. Rev. 7, 38 (1947); A. Shild.Phys. Rev. 73, 414 (1948); E. J. Hellund and K Tanaka,Phys. Rev. 94, 192 (1954); P. Gibbs. “The small-scale structure of space-time: a bibliographical review.” preprint HEP-TH/9506171.

    Google Scholar 

  13. A. N. Kolmogoroff,Grundbegriffe der Wahrscheinlichkeitslehre. 1933. English translation by N. Morrison (Chelsea. New York, 1950).

  14. A. Yu. Khrennikov,Phys. Lett. A 200, 219–223 (1995):Physica A 215, 557–587 (1995);Int. J. Theor. Phys. 34, 2423 2433 (1995);J. Math. Phys. 36, 6625–6632 (1995).

    Google Scholar 

  15. W. Muckenheim,Phys. Rep. 133, 338–401 (1986).

    Google Scholar 

  16. E. Prugovecki.Can. J. Phys. 45, 2173–2219 (1967);Found. Phys. 3, 3–18 (1973).

    Google Scholar 

  17. H. Margenau and J. L. Park,Found. Phys. 3, 19–29 (1973).

    Google Scholar 

  18. A. Yu. Khrennikov,Physics-Doklady. to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Moscow Institute of Electronic Engineering.

This research was supported by the Alexander von Humboldt-Stiftung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennikov, A. The ultrametric Hilbert-space description of quantum measurements with a finite exactness. Found Phys 26, 1033–1054 (1996). https://doi.org/10.1007/BF02061402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02061402

Keywords

Navigation