Skip to main content
Log in

Determination of a strong organic ligand dissolved in seawater: Thorium-complexing capacity of oceanic dissolved organic matter

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new method has been developed to measure a strong ligand in oceanic dissolved organic matter (DOM) by Th complexation in acidic media and the adsorption of the Th complex onto XAD-2 resin. Th reacts quantitatively with organic binding site of DOM in strong acid media (around 0.1M H+ solution), which is equilibrated within 24 hours. According to mass action analysis, Th forms a 1∶1 complex with the binding site in DOM, whose conditional stability constant is 106.7M−1. The conditional stability constant of the Th complex in DOM is in good agreement with that determined for oceanic Particulate Matter (PM) under similar experimental conditions. This finding suggests that the chemical properties of the strong ligand in DOM are similar to these in biogenic PM. The Th-complexing capacity in DOM, which corresponds to the total concentration of the strong organic ligand, can be determined (2–3 nM in surface waters) in a small volume (about 200 ml). The method has a detection limit of approximately 0.05 nM for the thorium-complexing capacity of DOM by using230Th.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. BUFFLE, Complexation Reactions in Aquatic Systems: an Analytical Approach, Holsted Press, New York, 1987.

    Google Scholar 

  2. U. SIEGENTHALER, J. L. SARMIENTO, Nature, 365 (1993) 119.

    Google Scholar 

  3. K. HIROSE, Y. DOKIYA, Y. SUGIMURA, Mar. Chem., 11 (1982) 343.

    Google Scholar 

  4. C. M. G. VAN DEN BERG, Mar. Chem., 11 (1982) 307.

    Google Scholar 

  5. K. HIROSE, Anal. Chim. Acta, 284 (1994) 621 and references therein.

    Google Scholar 

  6. S. PRIBIL, P. MARVAN, Arch. Hydrobiol. Suppl. 49, Algological Studies, 15 (1976) 214.

    Google Scholar 

  7. T. SAKAGUCHI, T. HIROKOSHI, A. NAKAJIMA, J. Ferment. Technol., 56 (1978) 561.

    Google Scholar 

  8. A. NAKAJIMA, T. HIRIKOSHI, T. SAKAGUCHI, Agric. Biol. Chem., 43 (1979) 1455.

    Google Scholar 

  9. C. A. MAHAN, J. A. HOLCOMBE, Anal. Chem., 64 (1992) 133 and references therein.

    Google Scholar 

  10. W. W. KUBIAK, J. WANG, Anal. Chem., 61 (1989) 468.

    PubMed  Google Scholar 

  11. P. O. HARRIS, G. J. RAMELOW, Environ. Sci. Technol., 24 (1990) 220.

    Google Scholar 

  12. R. CHESTER, A. THOMAS, F. J. LIN, A. S. BASAHAM, G. JACINTO, Mar. Chem., 24 (1988) 261.

    Google Scholar 

  13. K. HIROSE, Y. SUGIMURA, J. Radioanal. Nucl. Chem., 149 (1992) 83.

    Google Scholar 

  14. K. HIROSE, Y. SUGIMURA, Sci. Total Environ., 130/131 (1993) 517.

    Google Scholar 

  15. D. LANGMUIR, J. S. HERMAN, Geochim. Cosmochim. Acta, 44 (1980) 1753.

    Google Scholar 

  16. K. HIROSE, E. TANOUE, Geochim. Cosmochim. Acta, 58 (1994) 1.

    Google Scholar 

  17. R. F. C. MANTOURA, Organo-Merallic Internations in Natural Waters, in: Marine Organic Chemistry, E. K. DUURSMA and R. DAWSON (Eds), Elsevier Oceanograph Series, 1981, p. 179 and references therein.

  18. M. L. A. M. CAMPOS, C. M. G. VAN DEN BERG, Anal. Chim. Acta, 284 (1994) 481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, K. Determination of a strong organic ligand dissolved in seawater: Thorium-complexing capacity of oceanic dissolved organic matter. Journal of Radioanalytical and Nuclear Chemistry, Articles 204, 193–204 (1996). https://doi.org/10.1007/BF02060880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02060880

Keywords

Navigation