Skip to main content
Log in

Semiconductor gamma-ray spectrometry with whole spectrum processing

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new method for evaluation of semiconductor γ-ray spectra based on factorization of the response operator, a Scaling Confirmatory Factor Analysis (SCFA), is described. A set of common factors, resulting from fundamental photon interactions with matter (full energy peak, Compton continuum, backscattering peak and the residual factor), has been used. The scaling and loading coefficients for the common factors have been estimated by a confirmatory least squares technique of factor analysis. A latent interpolation of modelling coefficients enables to construct a response function in the response operator for an arbitrary energy of the measured spectrum. The analysis of incidental spectral parameters indicates a significant improvement of the whole spectrum processing. A comparison of the SCFA method with the most commonly used peak net area method shows that the former method is 5–10 times more sensitive (depending on interferences).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. 3rd Int. Conf. Low-level Counting, P. POVINEC (Ed.), Nucl. Instr. Methods, B17 (1986) 377.

  2. Proc. 14th Europhys. Conf. Nucl. Phys.: Rare Nucl. Decays and Fund. Processes, P. POVINEC (Ed.), J. Phys. G17 (1991) S1.

  3. Proc. Int. Conf. Rare Nucl. Processes, P. POVINEC (Ed.), World Scientific, Singapore, 1992.

    Google Scholar 

  4. K. DEBERTIN, R. G. HELMER, Gamma- and X-ray Spectrometry with Semiconductor Detectors, North-Holland, Amsterdam, 1988.

    Google Scholar 

  5. C. M. DAVISSON, in: Alpha-, Beta- and Gamma-Ray spectrometry, Vol. 1, K. SIEGBAHN (Ed.), North-Holland, Amsterdam, 1965, p. 37.

    Google Scholar 

  6. S. M. SHAFROTH, Scintillation Spectroscopy of Gamma-Radiation, Gordon and Breach Science Publishers, New York, 1967.

    Google Scholar 

  7. J. H. HAMILTON, J. C. MANTHRUTHIL, Radioactivity in Nuclear Spectroscopy, Gordon and Breach Science Publishers, New York, 1972.

    Google Scholar 

  8. R. J. D. BEATTIE, J. BYRNE, Nucl. Instr. Methods, 104 (1972) 163.

    Google Scholar 

  9. M. J. BERGER, S. M. SELTZER, Nucl. Instr. Methods, 104 (1972) 317.

    Google Scholar 

  10. R. P. GARDENER, Nucl. Instr. Methods, 138 (1976) 287.

    Google Scholar 

  11. P. VLAHUS, Factor Analysis and its Generalization, SNTL, Prague, 1985.

    Google Scholar 

  12. L. L. THURSTONE, Multiple Factor Analysis, University Press, Chicago, 1947.

    Google Scholar 

  13. E. R. MALINOWSKI, D. G. HOWERY, Factor Analysis in Chemistry, Wiley and Sons, New York, 1980.

    Google Scholar 

  14. R. P. McDONALD, Brit. J. Math. Statist. Psychol., 22 (1969) 149.

    Google Scholar 

  15. K. G. JORESKOG, Biometrika, 57 (1970) 239.

    Google Scholar 

  16. K. G. JORESKOG, Statistical Meth. Digital Computers, 3 (1977) 125.

    Google Scholar 

  17. M. IHARA, M. OKAMOTO, Stat. Prob. Lett., 3 (1985) 287.

    Google Scholar 

  18. L. A. CURIE, Anal. Chem., 40 (1968) 586.

    Google Scholar 

  19. I. OBRUSNIK, P. KOTAS, Chem. Listy, 42 (1978) 88.

    Google Scholar 

  20. Š. KRNAČ, P. POVINEC, P. RAGAN (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krnáč, Š., Povinec, P.P. Semiconductor gamma-ray spectrometry with whole spectrum processing. Journal of Radioanalytical and Nuclear Chemistry, Articles 204, 57–74 (1996). https://doi.org/10.1007/BF02060867

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02060867

Keywords

Navigation