A ratio derivative spectrophotometric method for the simultaneous determination of uranium and plutonium

  • G. R. Relan
  • A. N. Dubey
  • S. Vaidyanathan
Article

Abstract

A ratio derivative spectrophotometric method has been developed for the simultaneous determination of uranium and plutonium at mg levels in 1M HNO3 medium. In this method the overlapping spectra of uranium and plutonium are well resolved by making use of the first derivative of the ratios of their direct absorption spectra. The derivative ratio absorbances of uranium and plutonium are measured at 411.2 and 473.8 nm, respectively for their quantification. The method is simple, fast and does not require separation of uranium and plutonium. Another salient feature of the method is that it does not lead to generation of analytical waste thereby minimising the efforts required for the recovery of plutonium. Uranium in the conc. range of 10–25 mg/g and plutonium in the conc. range of 0.5 to 2 mg/g (U/Pu ratio varying from about 10 to 25) were determined in the same aliquot with a precision and accuracy of about 0.5% and 1%, respectively.

Keywords

Physical Chemistry Inorganic Chemistry Absorption Spectrum Uranium HNO3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. DAVIES, W. GRAY, Talanta, 11 (1964) 1203.Google Scholar
  2. 2.
    A. R. EBERLE, M. W. LERNER, C. G. GOLDBECK, C. J. RODDEN, Report NBL-252, 1972.Google Scholar
  3. 3.
    J. L. DRUMMOND, R. A. GRANT, Talanta, 13 (1966) 477.Google Scholar
  4. 4.
    C. L. RAO, G. M. NAIR, N. P. SINGH, M. V. RAMANIAH, N. SRINIVASAN, Z. Anal. Chem., 254 (1971) 126.Google Scholar
  5. 5.
    P. H. CHADWICK, I. R. McGOWAN, Talanta, 19 (1972) 1335.Google Scholar
  6. 6.
    J. B. FARDON, I. R. McGOWAN, Talanta, 19 (1972) 11.Google Scholar
  7. 7.
    V. KATO, M. TAKAHASI, J. Anal., 25 (1976) 841.Google Scholar
  8. 8.
    V. K. RAO, M. M. CHARYULU, P. R. NATARAJAN, Radiochem. Radioanal. Lett., 59 (1983) 59.Google Scholar
  9. 9.
    V. K. MANCHANDA, G. A. RAMA RAO, D. R. HANWATE, J. Radioanal. Chem., 96 (1983) 63.Google Scholar
  10. 10.
    R. KURODA, M. KUROSAKI, Y. HAYASHIBE, S. ISHIMERIC, Talanta, 37 (1990) 619.Google Scholar
  11. 11.
    G. R. RELAN, A. N. DUBEY, A. U. BHANU, S. VAIDYANATHAN, J. Radioanal. Nucl. Chem., 182 (1994) 437.Google Scholar
  12. 12.
    T. C. O'HAVER, Anal. Chem., 51 (1979) 91A.Google Scholar
  13. 13.
    T. NOWICKA-JANKOWSKA, K. GORCZYNSKA, A. MICHALIK, E. WIETESKA, in: Wilson and Wilson's, Comprehensive Analytical Chemistry, Vol. 19, G. SVEHLA (Ed.), Elsevier, Amsterdam, 1986, p. 356.Google Scholar
  14. 14.
    F. SALINAS, J. J. BERZAS NEVADO, A. ESPINOSA MANSILLA, Talanta, 37 (1990) 347.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • G. R. Relan
    • 1
  • A. N. Dubey
    • 1
  • S. Vaidyanathan
    • 1
  1. 1.Nuclear Materials Accounting Section, Fuel Chemistry DivisionBhabha Atomic Research CentreBombay(India)

Personalised recommendations