Preconcentration in multistage liquid-liquid extraction

  • Š. Palágyi


Theoretical possibilities of the preconcentration of solutes in multistage static liquid-liquid extraction have been investigated. It was found that the preconcentration increases with increasing distribution ratio of the solutes between two phases as well as with the number of stages (n) and reaches its maximum value for n approaching infinity, i.e., in dynamic extraction. Comparison of the preconcentration in multistage (Pns) and one-stage (p1s) static operations shows that the relative preconcentration (qns=pns/p1s) increases to infinity as the separation efficiency approaches 100%. Some of these theoretical considerations have been confirmed in extraction of radioiodine from aqueous solutions.


Physical Chemistry Aqueous Solution Inorganic Chemistry Theoretical Consideration Static Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. RINGBOOM, Complexation in Analytical Chemistry, Interscience Publishers, New York, 1963.Google Scholar
  2. 2.
    J. STARÝ, Extraktsiya khelatov, Izdatelstvo Mir, Moskva, 1966.Google Scholar
  3. 3.
    H. A. LAITINEN, Chemical Analysis, McGraw-Hill, New York, 1975.Google Scholar
  4. 4.
    R. L. PECSOK, L. D. SHIELDS, Modern Methods of Chemical Analysis, Wiley, New York, 1968.Google Scholar
  5. 5.
    J. A. DEAN, Chemical Separation Methods, Van Nostrand Reinhold, New York, 1969.Google Scholar
  6. 6.
    A. K. DE, S. M. KHOPKAR, R. A. CHALMERS, Solvent Extraction of Metals, Van Nostrand Reinhold, London, 1970.Google Scholar
  7. 7.
    J. M. MILLER, Separation Methods in Chemical Analysis, Wiley, New York, 1975.Google Scholar
  8. 8.
    E. JACKWERTH, A. MIZUIKE, Y. A. ZOLOTOV, H. BERNDT, R. HÖHN, N. M. KUZMIN, Pure Appl. Chem., 51 (1979) 1195.Google Scholar
  9. 9.
    D. I. COMBER, Radiochemical Methods of Analysis, Plenum Press, New York, 1975.Google Scholar
  10. 10.
    T. BRAUN, G. GHERSINI (Eds), Extraction Chromatography, Akadémiai Kiadó, Budapest, 1975.Google Scholar
  11. 11.
    T. BRAUN, E. BUJDOSO (Eds), Radiochemical Separation Methods, Akadémiai Kiadó, Budapest, 1975.Google Scholar
  12. 12.
    J. MINCZEWSKI, J. CHWASTOWSKA, R. DYBCZYNSKI, Separation and Preconcentration Methods in Inorganic Trace Analysis, Ellis Horwood, Chichester, 1982.Google Scholar
  13. 13.
    T. BRAUN, P. BULL, J. FARDY, I. HAIDUC, F. MACÁŠEK, W. J. MCDOWELL, N. Z. MISAK, J. D. NAVRATIL, T. SATO, J. Radioanal. Nucl. Chem., 84 (1984) 461.Google Scholar
  14. 14.
    F. MACÁŠEK, P. RAJEC, R. KOPUNEC, V. MIKULAJ, Solv. Extr. Ion Exch., 2 (1984) 227.Google Scholar
  15. 15.
    F. MACÁŠEK, R. KOPUNEC, V. MIKULAJ, P. RAJEC, A. ŠVEC, J. Radioanal. Nucl. Chem., 101 (1986) 33.Google Scholar
  16. 16.
    A. MIZUIKE, Enrichment Techniques for Inorganic Trace Analysis, Springer Verlag, Berlin, 1983.Google Scholar
  17. 17.
    H. A. DAS, A. FAANHOF, H. A. VAN DER SLOOT, Environmental Radioanalysis, Elsevier, Amsterdam, 1983.Google Scholar
  18. 18.
    Y. A. ZOLOTOV, Pure Appl. Chem., 50 (1978) 129.Google Scholar
  19. 19.
    Š. PALÁGYI, J. Radioanal. Nucl. Chem., 120 (1988) 415.Google Scholar
  20. 20.
    Š. PALÁGYI, J. Radioanal. Chem., 30 (1976) 299.Google Scholar
  21. 21.
    Š. PALÁGYI, J. Radioanal. Chem., 21 (1974) 47.Google Scholar
  22. 22.
    š. PALÁGYI, A. MITRO, 1st Czechoslovak Conf. on Chemometrics, Poster No. 11, Zemplínska Šírava-Kamenec, September 26–30, 1988.Google Scholar
  23. 23.
    W. K. ROBBINS, Anal. Chem., 51 (1979) 1860).Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • Š. Palágyi
    • 1
  1. 1.Institute of Radioecology and Applied Nuclear TechniquesKošice(Czechoslovakia)

Personalised recommendations