Advertisement

Uranyi ion transport through tri-n-octylamine-xylene based supported liquid membranes

  • M. A. Chaudry
  • D. Mohammad
Article

Abstract

Tri-n-octylamine (TOA) dissolved in xylene has been used as carrier, constituting liquid membrane supported in Celgard 2400 polypropylene microporous film for the transport of uranyl ions against their concentration gradient from aqueous acid solutions to an alkaline aqueous phase. Effect of sttrring rate, nitric acid concentration and TOA concentration in the organic membrane phase, on the flux of uranyl ions through the membrane has been studied. Viscosity and density data have been obtained to estimate diffusion coefficients and hence the permeability coefficients to compare the same with experimental values, using distribution coefficient data, measured from solvent extraction experiments and available in the literature. Analysis of the flux data has been performed to study the stoichiometry of the chemical reaction involved in complex formation reaction. The results have been compared with simple liquid-liquid extraction data.

Keywords

Permeability Coefficient Liquid Membrane Aqueous Acid Solution Membrane Phase Nitric Acid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. C. BABCOCK, R. W. BAKER, E. D. LACHAPELLE, K. L. SMITH, J. Membrane Science, 7 (1980) 71.Google Scholar
  2. 2.
    W. C. BABCOCK, R. W. BAKER, E. D. LACHAPELLE, K. L. SMITH, J. Membrane Science, 7 (1980) 89.Google Scholar
  3. 3.
    D. S. FLETT, J. MILLING, D. W. WEST, Proc. Symp. on Selective Extraction of Metals by Liquid Membrane Techniques, U. J. FROST, (Ed.), Oslo, 1982, p. 117.Google Scholar
  4. 4.
    W. E. KEDER, J. C. SHEPPARD, A. S. WILSON, J. Inorg. Nucl. Chem., 12 (1960) 327.Google Scholar
  5. 5.
    C. F. COLEMAN, At. Energy Rev., 2 (1964) 3.Google Scholar
  6. 6.
    E. L. CUSSLER, A. I. Ch. E. J., 17 (1971) 1600.Google Scholar
  7. 7.
    D. S. FLETT, Trans, Inst. Mining Met., 88 (1974) C-30.Google Scholar
  8. 8.
    E. L. CUSSLER, Multicomponent Diffusion, Elsevier Scientific Pub. Co. Amsterdam, 1976, Chapt. 8.Google Scholar
  9. 9.
    F. BARONCELLIS, G. SCIBONN, M. ZIFFERERO, J. Inorg. Nucl. Chem., 24 (1962) 547.Google Scholar
  10. 10.
    P. MEARES, Phil. Trans. Roy. Soc., London, B-278 (1977) 113.Google Scholar
  11. 11.
    C. R. WILKE, P. CHANG, A. I. Ch. E. J., 1 (1955) 264.Google Scholar
  12. 12.
    J. L. RYAN, J. Phys. Chem., 64 (1960) 1375.Google Scholar
  13. 13.
    TE-WEI LEE, WU-LONG, CANN TING, Ion-Exchange, 2 (1984) 435.Google Scholar
  14. 14.
    J. H. YOE, F. WILL, R. A. BLACK, Anal. Chem., 25 (1953) 1200.Google Scholar
  15. 15.
    M. A. CHAUDRY, NOOR-UL-ISLAM, DIN MOHAMMAD, J. Radioanal. Nucl. Chem., 109 (1987) 11.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • M. A. Chaudry
    • 1
  • D. Mohammad
    • 1
  1. 1.Pakistan Institute of Nuclear Science and TechnologyIslamabadPakistan

Personalised recommendations